
VLSI IP : Booth’s Multiplier

Copyright: AVIRAL MITTAL 1

Booth Multiplier
Implementation of Booth’s Algorithm using Verilog RTL

VLSI IP
Comments welcome on avimit@yahoo.com

Web: http://www.vlsiip.com



VLSI IP : Booth’s Multiplier

Copyright: AVIRAL MITTAL 2

Abstract:
This paper presents a description of booth’s algorithm for multiplication two
binary numbers. Radix-2 booth’s algorithm is explained, it is then identified that
the main bottleneck in terms of speed of the multiplier is the addition of partial
products. Radix-4 Booth’s algorithm is presented as an alternate solution, which
can help reduce the number of partial products by a factor of 2.The booht’s mul-
tiplier is then coded in verilog, and area and timing analysis is performed on it.
Radix-4 Booth’s multiplier is then changed the way it does the addition of partial
products. Carry-Save-Adders are used to add the partial products. Results of tim-
ing and area are then shown. The results table contain area and timing results of
3 multipliers i.e ordinary array multiplier, radix-4 booth’s multiplier (without
CSA), and radix-4 booth’s multiplier with CSA. Results are then discussed. The
technology used is 0.35u MTC45000 form Alcatel
For full verilog code of the radix-4 booth’s multiplier see Appendix



VLSI IP : Booth’s Multiplier

ll be

d as

h

Section 1:Booth Algorithm
1.1 Explanation of Booth Algorithm
First radix 2 booth algorithm is explained, and using the radix-2 booth algorithm, radix-4 wi
explained.
One of the ways to multiply signed number was invented by Booth.
Let us consider a Multiplicand M ‘n’ bits wide represented as Mn-1 Mn-2 ..... M2 M1 M0 and a
Multiplier ‘R’ again ‘n’ bits wide represented as Rn-1 Rn-2 .....R2 R1 R0. Both of these are
signed(two’s compliment) binary numbers. As per Booth’s algorithm,

M x R = M x {(Sn-1 x 2n-1) + (Sn-2 x 2n-2) ............(S2 x 22) + (S1 x 21) + (S0 x 20)} - equation (1)
where each Sk for, n-1<=k<=0, is a value which depends upon the value of R, and can be foun
explained in the following steps

1) Append R by a ‘0’ on LSB, we will called this bit as Z
2) Now make collections of ‘t’  bits, where ‘t’ = 2, for radix 2 booth algorithm, and name eac
collection Ck , where  n-1<=k<=0,
The rule to make each collection Ck is such that Ck = (RkRk-1), if n-1<=k<=1, and Ck = (RkZ) for
k= 0.
This process will result in ‘n’ collections, such that:
Cn-1= (Rn-1Rn-2), .........C1=(R1R0), C0=(R0Z)
3). Now depending upon the value of Ck, where n-1<=k<=0, find out Sk, where the value of ‘Sk’ is
defined in the following table for all possible combinations of values of a pair Ck.

Now equation(1) on page 3 can be re-written as
M x R = (M x pn-1 )+ (M x pn-2 ).......+ (M x p1 )+ (M x p0 )

where, pn-1= Sn-1 x 2n-1, pn-2=Sn-2 x 2n-2.......p1=S1x21, p0= S0x20

M x R = ppn-1 x 2n-1 + ppn-2 x 2n-2 .......+ pp1 x 21 + pp0 x 20--- equation (2)
where ppn-1=(M x pn-1 ),ppn-2=(M x pn-2 ),...pp1=(M x p1 ), pp0=(M x p0) are called partial prod-
ucts.

4). Add these ‘n’ partial products as shown in the equation below to get final product.

so M x R = ppn-1 x 2n-1 + ppn-2 x 2n-2....... +pp1 x 21 + pp0 x 20 --- equation (3)
Note that equation(3) is same as equation(2), reproduced for clarity.

Table 1:

Ck S

00 0

01 +1

10 -1

11 0
Copyright: AVIRAL MITTAL 3



VLSI IP : Booth’s Multiplier

fore
Now let us take an example of two numbers, such that M = 10110(-10), R= 10011(-13), and try to
evaluate MxR using the algorithm explained above.
Given that R = 10011,
we append Z to R to make the new R as 10011Z, where Z = 0,
so new R =1 0 0 1 1 0,

now, clearly

C4 = 10, S4 = -1
C3 = 00, S3 = 0
C2 = 01, S2 = +1
C1 = 11, S1 = 0
C0 = 10, S0 = -1

pp0 = M*S0
pp1 = M*S1
pp2 = M*S2
pp3 = M*S3
pp4 = M*S4

now to obtain the final product, we will use equation(3) on page 4.

final product = ppn-1 * 2
n-1 + ppn-2 * 2

n-2....... + pp1 * 2
2+ pp0 * 20

0 1 0 1 0 (+10)
0 0 0 0 0 (0)

1 1 1 1 0 1 1 0 (-40)
0 0 0 0 0 (0)

0 1 0 1 0 (+160)
0 0 1 0 0 0 0 0 1 0 (+130)

Figure 1: shifting, sign extension and adding of partial products

Remember we will have to sign extend the partial products, to make them equal in width be
adding.

So the result we got is +130, that is true because we had M = (-10) and R = (-13)
Copyright: AVIRAL MITTAL 4



VLSI IP : Booth’s Multiplier

he
od-
upon

g
ply-
g
ly

R,

to

r the
Radix-4 Booth Algorithm:
Motivation:
The main bottleneck in the speed of multiplication is the addition of partial products. More t
number of bits the multiplier/multiplicand is composed of, more are the number of partial pr
ucts, longer is the delay in calculating the product.The critical path of the multiplier depends
the number of partial products. In radix-2 booth’s algorithm, if we are multiplying 2 ‘n’ bits
number, we have ‘n’ partial products to add.
Radix-4 booth’s multiplication is an answer to reducing the number of partial products. Usin
Radix-4 booth’s multiplier, the number of partial products are reduced to ‘n/2’ if we are multi
ing two ‘n’ bits numbers, if ‘n’ is even number, or ‘(n+1)/2’ , if ‘n’ is an odd number. By reducin
the number of partial products, one can effectively speed up the multiplier by a factor rough
equal to 2.

Radix-4 Booth Algorithm Explained:
Now, at page no 3, Step 2, if we take ‘t’ = 3, and make collections of ‘t’ bits taken in one Ck,
where N-1<=k<=0 where N = n/2, for ‘n’ is even, N=(n+1)/2 if ‘n’ is odd. from the multiplier 
such that
Ck = (R2k+1R2kR2k-1), for N-2<=k<=1, for
Ck = (R2k+1R2kZ), for k = 0, and Z=0
Ck = (R2k+1R2kR2k-1), if ‘n’ is even, and k = N-1
Ck = (R2kR2kR2k-1), if ‘n’ is odd, and k = N-1,note that the sign bit is repeated i.e R2k can be seen
in two of the bits in Ck

We might have to sign-extend ‘M’ by one bit, if the CN-1 contains less than ‘t’ or 3 bits. This will
always happen, when ‘n’ is odd. The number of partial products will also decrease from ‘n’ 

‘N’. All the partial products in equation(3) at page 4, which are multiplied by 2x, where ‘x’ is odd
will dissapear.That means instead of shifting a partial product (before summing them up fo

final product) by ‘1’ bit i.e multiplying it by 21 in each partial product, we will shift by 2 bits

instead, i.e multiplying it by 22.
Table 1 will now change to Table 2 given below:

Table 2:

Ck Sk

000 0

001 +1

010 +1

011 +2

100 -2

101 -1
Copyright: AVIRAL MITTAL 5



VLSI IP : Booth’s Multiplier

l prod-

 of
Final product equation will now become:

MxR=ppN-1 x 22*(N-1) + ppN-2 x 22*(N-2) .......+ pp1 x 22+ pp0 x 20 equation (4),
where
ppN-1=M*SN-1 , ppN-2=M*SN-2..., pp1=M*S1,pp0=M*S0
ppk are called partial products
The full radix-4 booth multiplier equation can be written as

MxR=M*S N-1 x 22*(N-1) + M*SN-2 x 22*(N-2) .......+ M*S1 x 22+ M*S0x 20 equation (5),
Note that all the terms which contain multiplication by 2 to the power ‘x’, where ‘x’ is an odd
number have disappeared, suggesting that while addition of the partial products, each partia
uct will be shifted by 2 bits instead on 1 bit.

We will take the same example as we took in radix-2 booth’s multiplier to show the working
the algorithm.
M = 10110(-10), R= 10011(-13)
‘n’ = 5 bits.
since n is odd, N = (n+1)/2 = 3

R = Sign 10 0 1 1 Z   , substituting ‘Sign’ bit for ‘1’, and Z for ‘0’, R =1 10 0 1 1 0

C0 = 110, so S0 = -1
C1 = 001, so S1 = +1
C2 = 110, so S2 = -1

so our partial products are
pp0 = M*S0
pp1 = M*S1
pp2 = M*S2

M x R = pp2 * 2
4 + pp1 * 2

2 * pp0 * 2
0

MxR = 11010(-10) * (-1) * 24 + 11010(-10) * (+1) * 22 + 11010(-10) * 20 * (-1)

0 1 0 1 0 (+10)
1 1 1 1 0 1 1 0 (-40)

0 1 0 1 0 (+160)
0 0 1 0 0 0 0 0 1 0 (+130)

Figure 2: shifting, sign extension and adding of partial products

110 -1

111 0

Table 2:

Ck Sk
Copyright: AVIRAL MITTAL 6



VLSI IP : Booth’s Multiplier

 and
ucts

-

c-
-1’

them

jority

that
 in
Again, the answer was found to be +130, which is corret because M=(-10) and R=(-13)
Note
1) Each partial product is being sifted 2 places
2) That the number of partial products have been reduced in radix-4 algorithm to half

Section 1.2 Design of a Radix-4 Booth Multiplier using verilog.

Booth’s Multiplier can be either a sequential circuit, where each partial product is generated
accumulated in one clock cycle, or it can be purely combinational, where all the partial prod
are generated in parallel.
Our objective is to do a combinational multiplier.
The analytical expression of radix-4 booth’s multiplier is given in equation(5), which is repro
duced here.

MxR=ppN-1 x 22*(N-1) + ppN-2 x 22*(N-2) .......+ pp1 x 22+ pp0 x 20 equation (4),
where
ppN-1=M*SN-1 , ppN-2=M*SN-2..., pp1=M*S1,pp0=M*S0
ppk are called partial products

MxR=M*SN-1 x 22*(N-1) + M*SN-2 x 22*(N-2) .......+ M*S1 x 22+ M*S0x 20

where N = n/2 if ‘n’ is even, N = (n+1)/2, if ‘n’ is odd. Note ‘n’ is the total number of bits in a ve
tor, not the index of the MSB of a vector. Index value or MSB of the vector will therefore be ‘n
All Sk can be found by looking into Table 2, values of Ck, and method to find Ck are described at
page 5
Clearly, our objective is to find all the partial products and add them together, after shifting 
by appropriate number of bits.

Sk = f(R2k+1R2kR2k-1), if k = 0, then instead of R2k-1 use 0, if 2k+1 > ‘n-1’ then use R2k instead of
R2k+1Expression --(1)
For sake of simplicity, ‘n’ is assumed to be an even number, as this would be the case in ma
of the designs done. For the assignment ‘n’ is already given to be ‘16’.

The design:

What we need:
1). We need to generate values : -1*M, -2*M, M, 2*M, where M is the multiplicand.
2). We need to generate Ck,Sk, for each k
3). Partial Products
4). A way to add partial products.Taking into account the shifting of the partial products, such
their sign bits are preserved, and each shifting is basically shifting by 2 bits instead of 1 bit
radix-4 booth’s algorithm.
Copyright: AVIRAL MITTAL 7



VLSI IP : Booth’s Multiplier

by
2*M

 -

t.

ribed
1). Generating M is not required, it is already present as input, 2*M is simply M shifted left 
one bit, i.e appending a ‘0’ to LSB of M.(remember to extend M by at least one bit, so that 
can be contained in the number of bits
Generating -M, and -2*M:  (-1*M) is twos compliment of M, -2*M is the two’s compliment of
1*M shifted by one bit i.e an ‘0’ bit added to the LSB of (-1*M)

2). Generating Ck, Sk.
Use table 2 for Cks and directly the Expression (1) shown above to generate these Sks
3). partial products. Select one of (0, -M, -2M, M, 2M) depending upon Sk, and these will be the
partial products(unshifted)

4). A way to add partial products:
Shift each partial product by 2 bits, as shown in Figure 2 on page(7), to get the final produc

The following compact verilog code is self-explanatory, and implements all the 4 steps desc
above, to generate the final product ‘prod’ using ‘x’ in place of M and ‘y’ in place of ‘R’.

assign inv_x = {~x[width-1],~x}+1; //generate two’s compiment of multiplicand x(M)
always @ (x or y or inv_x)
begin
  cc[0] = {y[1],y[0],1’b0}; //generate Ck for k=0(special case)
  for(kk=1;kk<N;kk=kk+1)
    cc[kk] = {y[2*kk+1],y[2*kk],y[2*kk-1]}; //generate Ck for each k, for k is not 0
  for(kk=0;kk<N;kk=kk+1)
  begin
    case(cc[kk]) //Depending upon Ck, select M,2M,-M,-2M, or 0 as the partial product
      3’b001 , 3’b010 : pp[kk] = {x[width-1],x};
      3’b011 : pp[kk] = {x,1’b0};
      3’b100 : pp[kk] = {inv_x[width-1:0],1’b0};
      3’b101 , 3’b110 : pp[kk] = inv_x;
      default : pp[kk] = 0;
    endcase
    spp[kk] = $signed(pp[kk]);//sign extend
    for(ii=0;ii<kk;ii=ii+1)
      spp[kk] = {spp[kk],2’b00}; //multiply by 2 to the power x or shifting operation
  end //for(kk=0;kk<N;kk=kk+1)
  prod = spp[0];
  for(kk=1;kk<N;kk=kk+1)
    prod = prod + spp[kk]; //add partial products to get result
end
assign p = prod;
Copyright: AVIRAL MITTAL 8



VLSI IP : Booth’s Multiplier

 of
port
mul-

. In
ss, to

cts.
a of

ted
 is so
ready
ompli-
ated
The above RTL code successfully implements the radix-4 booth’s algorithm. The simulation
this booth’s multiplier gave correct results. This also proves that the alorithm given in this re
is correct. The design is parameterized, and just changing the value of ‘width’ a new booth’s
tiplier is ready. That is it is designed for re-use.
However, this booth’s multiplier uses ‘+’ for addition. Which when synthesized can produce
adders with long delays, and therefore it will affect the overall performance of the multiplier
order to cut down on ‘delays’, we might choose carry-save-adders or carry-look-ahead addre
minimise the critical path of the adder, and speed up the multiplier.

Following is the code for a booth multiplier using carry save adders to add the partial produ
Note that the number of carry save adders will be quite large and it will greatly impact the are
the design.
Also note that in this design, only partial product needs addition, there is no ‘carry’ associa
with each partial product as it is in case of the code given in the assignment template. This
because the partial product is a full 2’s compliment (whenever required), and the carry has al
been added, unlike the one given in the assignment notes where partial product is only 1’s c
ment, and the addition of ‘1’ to one’s compliment to make it 2’s compliment, has been propag
as a ‘carry’.

The following RTL implements the booth’s multiplier using carry save adders.
assign inv_x = {~x[width-1],~x}+1; //generate two’s compiment of multiplicand x(M)
always @ (x or y or inv_x)
begin
  cc[0] = {y[1],y[0],1’b0}; //generate Ck for k=0(special case)
  for(kk=1;kk<N;kk=kk+1)
    cc[kk] = {y[2*kk+1],y[2*kk],y[2*kk-1]}; //generate Ck for each k, for k is not 0
  for(kk=0;kk<N;kk=kk+1)
  begin
    case(cc[kk]) //Depending upon Ck, select M,2M,-M,-2M, or 0 as the partial product
      3’b001 , 3’b010 : pp[kk] = {x[width-1],x};
      3’b011 : pp[kk] = {x,1’b0};
      3’b100 : pp[kk] = {inv_x[width-1:0],1’b0};
      3’b101 , 3’b110 : pp[kk] = inv_x;
      default : pp[kk] = 0;
    endcase
    spp[kk] = $signed(pp[kk]);//sign extend
    for(ii=0;ii<kk;ii=ii+1)
      spp[kk] = {spp[kk],2’b00}; //multiply by 2 to the power x or shifting operation
  end //for(kk=0;kk<N;kk=kk+1)
end

assign sum0 = $signed(spp[0]);
assign sum1 = $signed(spp[1]);
assign sum2 = $signed(spp[2]);
assign sum3 = $signed(spp[3]);
Copyright: AVIRAL MITTAL 9



VLSI IP : Booth’s Multiplier

1’b0));
0]),

0]),

rray
. For
 syn-
nd

ound

All
assign sum4 = $signed(spp[4]);
assign sum5 = $signed(spp[5]);
assign sum6 = $signed(spp[6]);
assign sum7 = $signed(spp[7]);

//add all partial produces using carry save adders.
csa_32 csa_32_0 ( .s1(sum8), .s2(sum9), .p1(sum0), .p2(sum1), .p3(sum2), .cin(1’b0));
csa_32 csa_32_1 ( .s1(sum10), .s2(sum11), .p1(sum3), .p2(sum4), .p3(sum5), .cin(1’b0));
csa_32 csa_32_2 ( .s1(sum12), .s2(sum13), .p1(sum6), .p2(sum7), .p3(32’b0), .cin(1’b0));
csa_32 csa_32_3 ( .s1(sum14), .s2(sum15), .p1(sum8), .p2(sum9[31:0]), .p3(sum10), .cin(
csa_32 csa_32_4 ( .s1(sum16), .s2(sum17), .p1(sum11[31:0]), .p2(sum12), .p3(sum13[31:
.cin(1’b0));
csa_32 csa_32_5 ( .s1(sum18), .s2(sum19), .p1(sum14), .p2(sum15[31:0]), .p3(sum16),
.cin(1’b0));
csa_32 csa_32_6 ( .s1(sum20), .s2(sum21), .p1(sum18), .p2(sum19[31:0]), .p3(sum17[31:
.cin(1’b0));
assign p = sum20+sum21;

Section 1.4 Results discussion

It is required to perform a timing and area analysis on 2 types of multipliers i.e an ordinary a
multiplier and a booth’s multiplier, so that the need of a booth’s multiplier can be appreciated
this purpose, the ordinary multiplier, and two types of booth’s multiplier were designed, and
thesized, on target library MTC45000. Each of these multipliers were optimised for timing a
area separately. Timing being the main criteria and constraint.
The process followed for optimisation:
All the multipliers were first synthesized and constrained for area, and minimum area was f
irrespective of the timing. All areas were recorded.

All multipliers were then optimized for timing, and the delay of the critical path was recorded.
the values from above two steps are recorded and tabulated for reference below.

Table 3:

Multiplier type ordinary multiplier
booths multiplier

without  csa
booths multiplier

with  csa

delay of the critical
path in ns

23.40 16.61 14.56

area at the time of
min timing

 2474.83 3181.78 4541.12

min area sq
microns

1833.92 1375.06 2095.02
Copyright: AVIRAL MITTAL 10



VLSI IP : Booth’s Multiplier

r the
 of
 the
ith

s,

ed
 ordi-

n be
 per-
oth’s
From the above table, it is gathered that while the design was optimized for timing, that is fo
most important constraint in the exercise, booth multiplier with csa has a critical path delay
14.56 ns, booth multiplier(without csa) has a critical path delay of 16.16 ns as compared to
critical path of ordinary multiplier which was reported to be 23.4 ns. So booth’s multiplier w
csa is best as far as the timing is concerned.
clearly booth multiplier (with or without csa) outperformed the ordinary multiplier when opti-
mized for timing.

As far as area is concerned, booths multiplier with csa has the maximum area of 4541 unit
among all, which is obvious, because we used so many adders for parallel processing.
Booth multiplier without csa have even less area than the ordinary multiplier,(when optimiz
only fro area) because the number of adders are reduced to half of the number of adders is
nary multiplier because there are only half of partial products in a radix-4 booth’s multiplier.

Conclusion:
1). Use booth’s multiplier with csa if area is not critical.
2). Use booth’s multiplier without csa if area is critical and a bit of compromise on timing ca
made. In the above example, 1360 units of area are used to improve the timing by ~2ns. In
centages, 42% area is increased to get 13.7 % reduction in timing. So the best choice is bo
multiplier without csa. This design is also parameterized, giving a high degree of re-use.
Copyright: AVIRAL MITTAL 11



VLSI IP : Booth’s Multiplier
APPENDIX
A1 Booth Multiplier V erilog Code(without csa)
////////////////////////////////////////////////////////////////////////////////
//                        Coypright (C) Aviral Mittal.
////////////////////////////////////////////////////////////////////////////////
//   All rights reserved. Reproducion in whole or in part is prohibited without
//   written consent of copyright Owner.The professional use of this material
//   is subject to the copy right owners approval in written.
////////////////////////////////////////////////////////////////////////////////
//   Comments welcome on aviral.mittal@sli-institute.ac.uk or avimit@yahoo.com
////////////////////////////////////////////////////////////////////////////////
// It is a radix-4 booth’s multiplier. It will work ONLY if width is even Number
‘define width16
‘timescale 1ns/1ps
module booth_mult (p, x, y);
parameter width=‘width;
parameter N = ‘width/2;
input[width-1:0]x, y;
output[width+width-1:0]p;
  reg [2:0] cc[N-1:0];
  reg [width:0] pp[N-1:0];
  reg [width+width-1:0] spp[N-1:0];
  reg [width+width-1:0] prod;
  wire [width:0] inv_x;
  integer kk,ii;

assign inv_x = {~x[width-1],~x}+1;
always @ (x or y or inv_x)
begin
  cc[0] = {y[1],y[0],1’b0};
  for(kk=1;kk<N;kk=kk+1)
    cc[kk] = {y[2*kk+1],y[2*kk],y[2*kk-1]};
  for(kk=0;kk<N;kk=kk+1)
  begin
    case(cc[kk])
      3’b001 , 3’b010 : pp[kk] = {x[width-1],x};
      3’b011 : pp[kk] = {x,1’b0};
      3’b100 : pp[kk] = {inv_x[width-1:0],1’b0};
      3’b101 , 3’b110 : pp[kk] = inv_x;
      default : pp[kk] = 0;
    endcase
    spp[kk] = $signed(pp[kk]);
    for(ii=0;ii<kk;ii=ii+1)
      spp[kk] = {spp[kk],2’b00}; //multiply by 2 to the power x or shifting operation
  end //for(kk=0;kk<N;kk=kk+1)
  prod = spp[0];
Copyright: AVIRAL MITTAL 12



VLSI IP : Booth’s Multiplier
  for(kk=1;kk<N;kk=kk+1)
    prod = prod + spp[kk];
end
assign p = prod;
endmodule
Copyright: AVIRAL MITTAL 13


	Table 1:
	Table 2:
	Table 3:

