IPBA : VC Evaluation Assignment

Student Name:
Student’s Email

ISLI Registration Number

Module
Assignment Lecturer

AVIRAL MITTAL ISLI 2005/2006

Aviral Mittal
aviral.mittal@sli-insti-
tute.ac.uk, avimit@yahoo.com
2005/21
IPB
Prof Trughul Arslan

IPBA : VC Evaluation Assignment

This Report consist of following 6 Sections.
e Section 1: General Introduction

1.1 Aims and Objectives of this exercise
* Section 2: Soft IP Evaluation:

2.1 Introduction to Soft IP Evaluation
2.2 Steps
2.3 Rules and Guidelines, how far each rule was followed/not followed, and why with exam-
ple corrections
2.3.1 System Level Design Issues: Rules and Tools
2.3.2 RTL Coding Guidelines
2.3.2a: Comment upon overall results and quality of RTL
2.3.3 Macro Synthesis Guidelines
2.3.4 Verification Guidelines
2.3.5 Deliverable Guidelines
2.4 Results
» Section 3 Hard IP Generation and Evaluation

3.1 Introduction to IP Hardening Process and Hard IP Evaluation
3.2 Steps
3.3 Results

* Section 4: Common or total Results and results discussion

» Section 5: Comment on OpenMore
» Section 6: Appendix

A Filled OpenMore Spread sheet

B Figures from Hard IP Generation Process

C Scrips (Perl Code) used to evaluate some of the guidelines/Rules

D Log files generated by the script, if there are too many violations corresponding to a rule.
As it might not be possible to put all the violations corresponding to a single guideline in mid-
dle of the report.

AVIRAL MITTAL ISLI 2005/2006 2

IPBA : VC Evaluation Assignment

Section 1:General Introduction.

As the IP business is rising, and more and more companies are adopting business models based on
IP licensing. With the perpetual increase in IPs in the market, the problem of ‘how good’ and IP is
also increasing with a great pace. There are various criteria of evaluating ‘how good’ an IP is,
such as functionality, technology, performance, cost, area, support, power, reuse etc. The scope of
this assignment is to focus on ‘reuse’.

Now there can be various ways in ‘reusability’ can be evaluated, among them is OpenMORE
assessment program, developed jointly my Synopsys and Mentor Graphics. OpenMore assess-
ment program is based on the Reuse Methodology Manual (RMM). The focus of this exercise will
be on the RMM Section 5 i.e RTL Coding Guidelines, however the RMM section 1 i.e Macro
Design Guidelines, and RMM Section 3 i.e System-Level Design Issues: Rules and Tools, will
also be addressed briefly.

Although a soft-ip has been provided, but to be able to ‘evaluate’ it to a degree of satisfaction,
the IP will also be hardened. That is, the scope of this assignment will also cover a method to con-
vert the soft-ip i.e RTL to hard-ip i.e layout or GDSII using industry standard tools. So this assign-
ment report will also provide a section on RTL to GDSII flow that will be run on the soft-ip,

which will produce a final hardened layout of the IP provided. Issues (if any) during the hardening
process will also be discussed. The process of hardening the IP will be discussed in Section 3
“Hard IP Generation and Evaluation”.

Section 1.1Aims and Objectives of this exercise

Following is the point wise description of the objectives/aims of this assignment:

» Evaluate the IP against the OpenMORE assessment criteria: This will greatly help us in
understanding the basic RTL coding guidelines that ‘must’ be followed while writing a indus-
try standard IP.

» Harden the IP: This will greatly help us understand the industry standard process of convert-
ing an RTL to GDSII. This might also help in catching problems in the IP, which might be an
issue in converting the RTL into a layout.

* To be able to read and understand an industry standard documentation and use it to understand
the IP and the IP environment provided.

* To be able to learn the skills and tools used to evaluate an industry standard IP.

Notes: The Openmore spreadsheet submitted with this assignment will not have comments in
SOFT IP evaluation section. This is because detailed comments on each guideline are made in
this report. However in the HARD IP section, the spread sheet will have all the comments, as the
evaluation is done only on the spread sheet.

AVIRAL MITTAL ISLI 2005/2006 3

IPBA : VC Evaluation Assignment

Section 2:Intr oduction to Soft IP Evaluation
The evaluation of the soft-ip is done using the OpenMORE assessment program, which is itself
based upon the RMM. The evaluation will focus mainly on Section 5 of RMM i.e on “RTL Cod-
ing Guidelines”, and will go through the other Sections briefly.

RTL stands for Register-Transfer-Level, which is used to code the hardware using a Hardware
Description Language so that the resulting code can be ‘synthesized’ into a gate level netlist
which should be ‘functionally’ equal to the HDL code. RMM Section 5 provides guidelines and
rules which when followed make the HDL code or the IP more reusable, easy for others to under-
stand, easy for others to modify, more synthesis friendly, more portable. These simple guide lines
when followed can make the IP very much more marketable as compared to the one which do not
follow these guidelines.

Section 2.1:Steps

* Read documentation and have as much information as possible about the IP environment, IP
use, IP naming conventions. Comment upon the documentation.

* Run Simulation Scripts, Synthesis Scripts, post synthesis simulation scripts, and see if there
are any problems with these. Comment upon the scripts and how far they succeed in perform-
ing the task they were designed to do.

* Focus on RTL code, (all RTL files), take one by one the ‘RTL coding guidelines’ and see if
they are followed. For some guidelines/rules, it might be possible to write a simple perl script
which will report any violations of the guidelines/rules. This will help in saving time, as read-
ing the whole RTL code with respect to only one guideline can be very time consuming, this
will also help in quickly evaluating IPs in future i.e. scripts can be re-used. But at the same
time it is also recognised that writing script for all the guidelines is a complex task and is
beyond the scope of this assignment. Also, The scripts written will be very simple and may
not be considered as a 100% secure method to report a violation against a given guideline. A
score for each rule/guideline will then be assigned. Appendix A will contain the source code
of all perl scripts used along with information about which guideline/rule it refers to.

* For each guideline/rule, a table just like the one shown below will be used.

Table 1: G 5.2.1(example)

RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score

521

A detailed comment if needed will follow the table, describing if or not the guideline/rule was fol-
lowed and why. A correction may also be suggested. Please note that if a rule/guideline is simple,
no explanation will be given for what the given rule/guideline itself means, however for complex
rules/guidelines a good explanation will be given.

It is to be noted that the scoring in each table refers to all the RTLs taken as one entity for the IP.
In some cases if the guideline/rule as a number of violations, the full log of violations will be put
in Appendix D. All the headings in the table are the same as the OpenMORE spread sheet, except
‘Script Used’ and ‘Score’. ‘Script used’ column will indicate the name of the script if used to

AVIRAL MITTAL ISLI 2005/2006 4

IPBA : VC Evaluation Assignment

evaluate that particular guideline. If no script is used it will say ‘N/A’. The name of the table will

be the RMM2 Section name. ‘Socre’ column tells the score given after assessment.

Section 2.3Rules and Guidelines, how far each rule was followed/not followed, and why with

example corrections
2.3.1System Level Design Issues: Rules and Tools
2.3.2RTL Coding Guidelines: Max Score 346

RMM2 5.2 Basic Coding Practices: Max Scax 52

R5.2.1.1
Table 2: R5.2.1.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5211 Documented naming conventions used R A 10 10 N/A
consistently thought the design

Comment: Following are the documents provided with the IP
Readme_ipba_project.pdf
Environment_Strategy.pdf
Rapier_External_Memory_Controller.pdf
external_memory_programmers_guide.pdf

The documenEnvironment_Strategy.p&ection 3.3.1 does say about naming conventions used
in verilog, and verilog actually uses those naming conventions.
The document also documents file naming conventions, directory structure in section 3.3.3. Over-

all it gives a good proof of documenting naming coventions and use of the same.
Hence the Assessment for this guidelinAlisays

Table 3: G 5.2.1.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.2 Lower case letters for all signal names| G A 2 2 Icase.pl
variables, and user-defined types

Comment: All the RTL(s) strictly followed the above guideline. Perl sdepsé.plwas used to
evaluate it, and it reported no instance of lower case letters ugmts) wires, regsThere are no

user-defined types in the design. Hence the Assessment for this guidAlweys.
Some examples from the RTL(s) are given below.

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

reg b_transfer_on_bus; // True is there is a valid transfer
// on the bus
reg transfer_type; // Setto ‘AHB_WRITE if the transfer is
/I a write transfer,’AHB_READ otherwise
wire hsel; // hsel is true when any of the hsel_mem bits are true
wire b_wait_states_left; // True if there are more wait states
/I left in this transfer
wire b_error_condition;
G5.2.1.3

Table 4: G 5.2.1.3

RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score

5.2.1.3 Upper case letters for names of constgn@G A 2 2 ucase.pl
and user defined types

Comment: All the RTL(s) strictly followed the above guideline. Perl script ‘ucase.pl’ was used to
evaluate it, and it reported no instance of lower case letters used in constants defined in the RTL
using‘define There are no user-defined types in the design. Hence the Assessment for this guide-
line isAlways. Some examples from the RTL are given below:

‘define ST_IDLE 60000001
‘define ST_ERROR_START 6°b000010
‘define ST_READ_WAIT 6000100
‘define ST_WRITE_ADDR 6'b001000
‘define ST_WRITE_WAIT 6010000
‘define ST_READ_ADDR 6100000

G5.2.1.4
Table 5: G 5.2.1.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5214 Meaningful names for signals, ports, | G A 2 2 N/A
functions, and parameters

AVIRAL MITTAL ISLI 2005/2006 6

IPBA : VC Evaluation Assignment

Comment: All the RTL(s) strictly followed the above guideline. Hence the Assessment for this
guideline isAlways. Some examples from the RTL are given below:

input hclk; /I AHB system clock. Only the rising edge of
/I this clock is used throughout the module.
input hreset_n; /I Active low AHB sychronous reset.

input [3:0] hsel_mem; // Active high AHB memory bank select.
/l MEM3, MEM2, MEM1, MEMO.

Gh.2.14.a
Table 6: G 5.2.1.4a
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.14.a Names do not differ in case only G A 2 2 Icase.p

Comment: All the RTL(s) strictly followed the above guideline. Perl script ‘Icase.pl’ was used
again to evaluate it, and it reported no instance of upper case lettepaiig, outputs, regs,
wires’. So there cannot be any duplication of signals using different case. There are no user-
defined types in the design. Hence the Assessment for this guidélimeiss.

G5.2.1.5
Table 7: G 5.2.1.5
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.2 Short but descriptive names for elabora-G A 2 2 N/A
tion parameters

Comment: All the RTL(s) strictly followed the above guideline. Hence the Assessment for this
guideline isAlways. Below are given a few examples from the RTL(S)

parameter tm_prop = 20;

parameter par_little_endian = 1,

G5.2.1.6

AVIRAL MITTAL ISLI 2005/2006 7

IPBA : VC Evaluation Assignment

Table 8: G 5.2.1.6

RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.6 Name clk or prefix clk for the clock sigq G N 2 0 clkname.pl
nals

Comment: None of the RTL(s) followed the above guideline. Hence the Assessment for this
guideline isNever. Below are given a few examples from the RTL(s). The clock used in the deign
is called ‘hclk’ instead. Following is the line from the RTL(s) which shows the narhelle's

input hclk; /l AHB system clock. Only the rising edge of

Perl script does not depend upon the comment, it checkavi@ys @ (posedge any_signal)’

and then determines that themy_signalis a clock. Since the IP is targeted on FPGA, it does not
use any asyn resets, and hence anything following posEdgein the design will be a clock sig-

nal.

Correction: The name of the clock can bk ' hH or even tlk_hclK.

G5.2.1.7
Table 9: G 5.2.1.7
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5217 Same name for all clock signals driven| G A 2 2 N/A
form the same source

Comment: All of the RTL(s) strictly followed the above guideline. All the RTL(s) use clock called
‘hclk which is sourced by a singlé@clk input at the top level. Hence the Assessment for this
guideline isAlways. Below are given a few examples from the RTL(S).

G5.2.1.8
Table 10: G 5.2.1.8
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.8 Active low signal names end withan | G A 2 2 N/A
uderscore followed by a lowercase chai-
acter consistently(_n)

AVIRAL MITTAL ISLI 2005/2006 8

IPBA : VC Evaluation Assignment

Comment: All of the RTL(s) strictly followed the above guideline. All the signals which are
described as ‘Active Low’ in comments use (_n) character. Hence the Assessment for this guide-
line is Always.Some examples from the RTL(s) are shown below:

input hreset_n; /I Active low AHB sychronous reset.
output mem_output_enable_n_o; // Active low output enable signal
G5.2.1.9

Table 11: G 5.2.1.9

RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score

5.2.1.9 Name or prefix rst used for reset signalsG N 2 0 N/A
If the reset signal is active low, user rst |n

Comment: None of the RTL(s) followed the above guideline. Hence the Assessment for this
guideline isNever. Below are given a few examples from the RTL(s). The reset pin used in the
deign is called ‘hresest_n’ instead. Following is the line from the RTL(s) which shows the name
as ‘hreset_n’.

input hreset_n; /I Active low AHB sychronous reset.
Correction: The name of the above reset signal carsbei‘or ven rst_n_hresét

G5.2.1.10
Table 12: R 5.2.1.10
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.10 VHDL Guideline Not Applicable R N/A 2 2 N/A
R5.2.1.11
Table 13: R 5.2.1.11
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
52111 If Verilog, always use (x:0) for multibit | R A 10 10 downto.pl
ports or signals, rather than (0:x)

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for this
guideline isAlways. A script downto.plwas used, it reported no violations.Below are given few
examples from the RTL(s).

input [3:0] hsel_mem;

reg [1:0] hresp;

AVIRAL MITTAL ISLI 2005/2006 9

IPBA : VC Evaluation Assignment

wire [1:0] hresp_req;

G5.2.1.12
Table 14: G 5.2.1.12
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.1.12 Same name or similar names, for ports G A 2 2 N/A
and signals that are connected that are npot
clocks

Comment: When binding an instance to wires, it is recommended that the names of the wires and
the ports(of the instantiated module) must be simlar or same. All of the RTL(s) strictly followed
the above guideline. Hence the Assessment for this guidelxieays. Following are the exam-

ples form the RTL(S).

i_ahb_ext_ mem_con

(.hclk (hclk),
.hreset_n (hreset_n),
.hsel_mem (hsel_mem),
.hwrite (hwrite),
G5.2.1.13
Table 15: G 5.2.1.13
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.1.13 Signal naming conventions listed used| G N 2 0 N/A
consistently and exhaustively

Comment: None of the RTL(s) followed the above guideline. No signals were found wit suffixes
‘r,a,’ pn, nxt',' Z Hence the Assessment for this guidelinélever.

End of RMM2 Section 5.2.1 Max Marks 52: Marks Scored = 36. %age = 69%

RMM2 5.2.3 Architecture Naming Corventions

Only applicable to VHDL.Not applicable here. Max marks = 2, Marks scored = 2.

RMM2 5.2.4 Headers in Souce Files : Max Scoe 10

AVIRAL MITTAL ISLI 2005/2006 10

IPBA : VC Evaluation Assignment

R5.2.4.1
Table 16: R 5.2.4.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.24.1 Header included at the top of every sourcR A 10 10 N/A

file, including scripts, containing RMM
recommended elements.(author name
optional)

(%)

Comment: All of the RTL(s) strictly followed the above guideline. All the RTL(s) include a

header with filename, author, description, date, modification history. Hence the Assessment for
this guideline iAlways.

RMM2 5.2.5 Use Comments Max Scer12

R5.2.5.1
Table 17: R 5.2.5.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5251 Comments used generously to explain|aR A 10 10 N/A
processes, functions, and declarations pf
types and subtypes

Comment: All of the RTL(s) strictly followed the above guideline. The RTL(S) are heavily com-
mented. Hence the Assessment for this guidelidéways.

G5.2.5.2
Table 18: G 5.2.1.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
52.1.2 All ports, signals and variables or group<s S 2 1 N/A
of signals or variables explained in com-
ments.

Comment: All of the RTL(s) strictly followed the above guideline. The ports, signals, variables in
RTL(s) are commented, but not all of them have comments. Hence the Assessment for this guide-
line isSometimes. Following are some examples:
Uncommented Port Names:

input hwrite;

input [1:0] htrans;

input [2:0] hsize;

AVIRAL MITTAL ISLI 2005/2006 11

IPBA : VC Evaluation Assignment

input hready;
input [31:0] haddr;
input [31:0] hwdata,;

Commented Ports:
output hready_reg; /I AHB register hready output.
output hready _mem; /l AHB memory hready output.
output [1:0] hresp_reg;
/I AHB response. These modules only provide two types of response:
/I OKAY and ERROR
output [1:0] hresp_mem;
output [31:0] hrdata_reg; // AHB register data output for read cycles.
output [31:0] hrdata_mem; // AHB memory data output for read cycles.

RMM2 5.2.6 Keep Commands on Separate Lines Max Sail0

R5.2.6.1
Table 19: G R5.2.6.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
526.1 Separate line used ofr each HDL statet R A 10 102 sepline.pl
ment

Comment: All of the RTL(s) strictly followed the above guideline. No occurrence of two state-
ments were reported by the scripeplie.pl which was used. The logic for finding this was look-
ing for more than one semicolons in a single line. Hence the Assessment for this guideline is
Always

RMM2 5.2.7 Line Length Max Scoe 2

G5.2.7.1
Table 20: G 5.2.7.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
527.1 Line Length throughout consistently kepG A 2 2 chars132.p
to 132 characters or less I

Comment: All of the RTL(s) strictly followed the above guideline. A scapafs132.pl'was

used for this purpose. It reported no violations. Hence the Assessment for this guid@liways

The author has made efforts to follow this guideline, as is evident from the RTL code. For exam-
ple the following line in the RTL code has been put into 4 separate lines, instead of just a single

AVIRAL MITTAL ISLI 2005/2006 12

IPBA : VC Evaluation Assignment

line. This is a single statement and this statement could have violated the guideline, if proper care
was not taken.
if(

(current_state == ‘ST_WRITE_ADDR && next_state == ‘ST_IDLE) ||

(current_state =='ST_WRITE_ADDR && next_state ==‘ST_WRITE_WAIT) ||

(current_state == ‘ST_WRITE_WAIT && next_state == ‘ST_WRITE_WAIT) ||

(current_state == ‘ST_WRITE_WAIT && next_state == ‘ST _IDLE))
There are numerous occurrences of such statements in the design which proves that this guideline
has been take care of, and its just not a coincidence that it is followed automatically

RMM2 5.2.8 Indentation Max Scoe 12

R5.2.8.1
Table 21: G 5.2.8.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.28.1 Indentation used to improve the readabilR A 10 10 N/A
ity of continued code lines and nested
loops.

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for this
guideline isAlways. Following is an example of the code showing indentation
begin
if (hsel && hready && (htrans[1] == 1'b1))
/I Transfer request currently on the bus
if (error_condition)
begin
slave_state <= ‘EMR_ERROR_WAIT;
hready _resp <= 1'b0;
hresp[1:0] <= 2'b01;
end // if (error_condition)
else if (hwrite) //write

G5.2.8.2
Table 22: G 5.2.8.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.8.2 Indentation of 1 to 4 spaces per indent; G A 2 2 N/A
number is consistent.

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for this
guideline isAlways. The number of space characters used for indentation is 2.

AVIRAL MITTAL ISLI 2005/2006 13

IPBA : VC Evaluation Assignment

RMM2 5.2.9 HDL Resered Words not used in HDL description Max Scoe 10

R5.2.9.1
Table 23: G 5.2.9.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.9.1 VHDL or Verilog reserved words G A 2 2 N/A
excluded for names of any elements in
your RTL source files.

Comment: All of the RTL(s) seem to follow the above guideline. It is however not possible to
check all the keywords because the list of keywords is very exhaustive. But the most common
ones were checked for and RTL(s) did not show any occurrence of VHDL keywords in it. Hence
the Assessment for this guidelineAswvays. The number of space characters used for indentation
is 2.

RMM2 5.2.10 Port Ordering Max Score 16

R5.2.10.1
Table 24: R 5.2.10.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.10.1 Ports declared in a logical order, consistR S 10 5 N/A
ently within a given design

Comment: As per the RMM2, the ports should be declared in the following order
Inputs:Clocks,Resets, Enables, Other control Signals,Data and address Lines

Outputs: Clocks,Resets,Enables,Other control Signals, Data.

The author of the IP has tried to follow this guideline as much as possible. But at the same time,
this guideline has also been violated, in order to group the ports together as per their function.
Hence the Assessment for this guidelin8asnetimes

G5.2.10.2
Table 25: G 5.2.10.2
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.10.2 Ports are declared one per line, prefergbie A 2 2 oneper-
with a comment following it on the same line.pl
line.

AVIRAL MITTAL ISLI 2005/2006 14

IPBA : VC Evaluation Assignment

Comment: All the RTL(s) have declared only one port per line. Although not always followed by
a comment on the same line. But the main point here is it seems that the ports should be one per
line, which is found to be followed consistently. A perl script ‘oneperlin.pl’ was written which
reported no violations. Hence the Assessment for this guideliAbvays. Here is some example
code showing that indeed only one port is declared per line.

input [1:0] htrans;

input [2:0] hsize;

input hready;

input [31:0] haddr; /[l AHB address bus bits.

input [31:0] hwdata;

G5.2.10.3
Table 26: G 5.2.10.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.10.3 Ports declared per recommended order G S 2 1 N/A

Comment: The RTL(s) of the IP, follow this guideline to a certain extent. Although the clocks are
declared first, followed by reset. But next in line are the ‘enable’ signals, which does not appear in
the desired order. For example in the fiédab_external_memory_control.v_rtlie portsenable’,
‘mem_chip_enable_n_o’, ‘mem_output_enable_n_o’, ‘mem_write_enable whioh are ena-

ble signals are declared after the signals‘li&ad_wait_stateQ’, ‘read_wait_statel’,
read_wait_state2’'which are control signals.

Hence the Assessment for this guidelin8asnetimes..

G5.2.104
Table 27: G 5.2.10.4
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.10.4 Comments used to describe groups of| G A 2 2 N/A
ports.

Comment: All RTL(s) follow this guideline.Following are some examples quoted from the
RTL(S).
/I AHB Inputs

input hclk; /l AHB system clock. Only the rising edge of
/I this clock is used throughout the module.

AVIRAL MITTAL ISLI 2005/2006 15

IPBA : VC Evaluation Assignment

input hreset_n; /I Active low AHB sychronous reset.

input [3:0] hsel_mem; // Active high AHB memory bank select.
/l MEM3, MEM2, MEM1, MEMO.

input hwrite; // AHB transfer direction indicator. High
/I for write cycle, low for read cycle.

input [1:0] htrans; // AHB transfer typ

/l AHB Outputs

output hready_resp; /l AHB hready output.
reg hready resp;

output [1:0] hresp; // AHB response. This module only provides.
reg [1:0] hresp; // two types of response:

// 00 = OKAY

// 01 = ERROR

/[10 = RETRY - not implemented

// 11 = SPLIT - not implemented

output [31:0] hrdata; // APB data output for read cycles.
reg [31:0] hrdata;

/l Memory Device Outputs

output [3:0] mem_chip_enable_n_o; // Active low chip enable signals for
reg [3:0] mem_chip_enable_n_o; // external memory devices.

Note that there are 3 examples of group of ports i.e ‘AHB inputs’ , ‘AHB Outputs’ and ‘Memory

Device Outputs’. Similarly the ports are described under ‘group of ports’ as far as possible in the
RTL(s) Hence the Assessment for this guidelin&ivgays

RMM2 5.2.11 RPort Maps and Generic Maps Max Scoe 22

AVIRAL MITTAL ISLI 2005/2006 16

IPBA : VC Evaluation Assignment

R5.2.11.1
Table 28: RG 5.2.11.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.11.1 VHDL rule Not applicable R N/A 10 10 N/A
R5.2.11.2
Table 29: R 5.2.11.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.11.2 If Verilog, always use explicit connectionR A 10 10 N/A
for ports using named association rather
than positional association.

Comment: There are instatiations of objects in the top level verilog file. It strictly follows this rule
as the port mapping is done using named association, as it is shown below.
ahb_external_memory_registers #(tm_prop)

i_ahb_ext_mem_reg

(-hclk (hclk),
.hreset_n (hreset_n),
.hsel (hsel_req),
.hwrite (hwrite),
.htrans (htrans),
.hsize (hsize),
.hready (hready),
.haddr (haddr),
.hwdata (hwdata),
.hready resp (hready_reg),
.hresp (hresp_req),
.hrdata (hrdata_reg),
.enable (enable),
.read_only (read_only),

.read_wait_stateO (read_wait_state0),
read_wait_statel (read_wait_statel),
read_wait_state2 (read_wait_state2),
.read_wait_state3 (read_wait_state3),
.write_wait_stateO (write_wait_state0),
.write_wait_statel (write_wait_statel),
.write_wait_state2 (write_wait_state2),
.write_wait_state3 (write_wait_state3)

);

AVIRAL MITTAL ISLI 2005/2006 17

IPBA : VC Evaluation Assignment

i_ahb_ext_mem_con

(-hclk (hclk),
.hreset_n (hreset_n),
.hsel_mem (hsel_mem),
.hwrite (hwrite),
.htrans (htrans),
.hsize (hsize),
.hready (hready),
.haddr (haddr),
.hwdata (hwdata),
.enable (enable),
.read_only (read_only),

.read_wait_stateO (read_wait_state0),
.read_wait_statel (read_wait_statel),
.read_wait_state2 (read_wait_state?2),
.read_wait_state3 (read_wait_state3),
write_wait_stateO (write_wait_state0),
write_wait_statel (write_wait_statel),
write_wait_state2 (write_wait_state2),
write_wait_state3 (write_wait_state3),

.hready_resp (hready_mem),
.hresp (hresp_mem),
.hrdata (hrdata_mem),

.mem_chip_enable_n_o (mem_chip_enable_n_o),
.mem_output_enable_n_o (mem_output_enable_n_o),
.mem_write_enable_n_o (mem_write_enable_n_o),
.mem_byte enable_ n_o (mem_byte enable _n_o),

.mem_address_o (mem_address_0),

.mem_datain_i (mem_datain_i),

.mem_dataout_o (mem_dataout_o0),

.mem_invertbits_i (mem_invertbits_i), //Added by SO on 2/8/01

.mem_invertbits_o (mem_invertbits_o), //Added by SO on 1/8/01

.mem_dataout_en_o (mem_dataout_en_0)

);
Hence the Assessment for this guidelinAlisays
G5.2.11.3

Table 30: G 5.2.11.3
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.11.3 Blank line between the input and outputG A 2 2 N/A
ports to improve readability

AVIRAL MITTAL ISLI 2005/2006

18

IPBA : VC Evaluation Assignment

Comment: All RTL(s) follow this guideline. There is always a blankline between input and output
ports. Hence the Assessment for this guidelinghgays. Following lines are quoted as examples
form the RTL(s)

output [31:0] hrdata_mem; // AHB memory data output for read cycles.

input [31:0] mem_datain_i; /I Memory device read databus.
input [3:0] mem_invertbits_i; /[Memory device read for invertbits.

/[Memory Device Outputs

/I Active low chip enable signals for external memory devices.
output [3:0] mem_chip_enable_n_o;

RMM2 5.2.12 VHDL Guideline, Not applicable Max Scoe 2

RMM2 5.2.13 Use Functions Max Scear 2

G5.2.13.1
Table 31: G 5.2.13.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.13.1 Functions used whenever possible instedal A 2 2 N/A
of repeating the same sections of code
with comments to explain the function

Comment: There are functions which are being used in the RTL such as ‘bus_invert_coder’,

‘binary2gray32’, and they are used wherever possible, which suggests that the author of the IP has

taken care of this guideline. A closer look of the RTL code shows no occurrence of repeated lines
of RTL codes which might be put into a single function. Hence the Assessment for this guideline
is Always

RMM2 5.2.14 Use Loops and Arrays Max Sca 4

AVIRAL MITTAL ISLI 2005/2006 19

IPBA : VC Evaluation Assignment

G5.2.14.1
Table 32: G 5.2.14.1
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
5.2.14.1 Loops and arrays used for improved rga@- S 2 1 N/A
ability of the source code

Comment: Although there are ample examples of arrays being used in the RTL code. But the
Author has missed an opportunity to declare the following 4 ‘regs’ and 4 ‘wires’ as array.
wire memO_control_reg_sel,
mem1_control_reg_sel,
memz2_control_reg_sel,
mem3_control_reg_sel;

reg [9:0] memO_control_reg,
mem1_control_reg,
memz2_control_reqg,
mem3_control_req;

Correction: The declaration could have been as shown below:

reg [9:0] mem_control_reg [3:0];
wire[9:0] memOQ_control_reg_sel,

This would have also given the author to use for loops instead of following multiple statements:
assign enable[0] = memO_control_reg[0];
assign enable[1] = mem1_control_reg[O0];
assign enable[2] = mem2_control_reg[0];
assign enable[3] = mem3_control_reg[0];
the following could have been a replacement code instead of the 4 lines above.

reg [9:0] mem_control_reg [3:0]; //delcare the array

In an always block use the following code:
for(i=0;i<4;i=i+1)
begin
mem_control_temp = mem_control_reg]i];
enable[i] = mem_control_temp[0];
read_only[i] = mem_control_temp[1];
end

Similarly for loops could have been used for the lines below.

AVIRAL MITTAL ISLI 2005/2006 20

IPBA : VC Evaluation Assignment

assign read_only[0] = memO_control_reg[1];
assign read_only[1] = mem1_control_reg[1];
assign read_only[2] = mem2_control_reg[1];
assign read_only[3] = mem3_control_reg[1];

assign read_wait_state0 = memO_control_reg[5:2];
assign read_wait_statel = mem1_control_reg[5:2];
assign read_wait_state2 = mem2_control_reg[5:2];
assign read_wait_state3 = mem3_control_reg[5:2];
assign write_wait_state0 = mem0_control_reg[9:6];
assign write_wait_statel = meml1_control_reg[9:6];
assign write_wait_state2 = mem2_control_reg[9:6];
assign write_wait_state3 = mem3_control_reg[9:6];
the following could have been a replacement code instead of
for(i=0;i<4;i=i+1)
begin
mem_control_temp = mem_control_req[i]
enable[i] = mem_control_temp[0]
read_only[i] = mem_control_temp[1]
end

Hence the Assessment for this guidelinEasnetimes.

G5.2.14.2
Table 33: G 5.2.14.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.14.2 Vector operation on arrays rather than [fdg A 2 2 N/A
loops whenever possible.

Comment: The RTL(s) have followed this as far as possible. Following are some examples where
vector operations have been done. They could have been done in loops also. Although it seems
guite obvious to use vector operations in the following code, but these are quoted here to prove
that the above guideline is being followed in RTL. There are no instances of any looping assign-
ments in the RTL(s) which could have been done in vector operations.

4’1000 : hrdata[31:0] <= {22’b0, memO0_control_reg[9:0]};

4’p0100 : hrdata[31:0] <= {22’b0, mem1_control_reg[9:0]};
4’b0010 : hrdata[31:0] <= {22’b0, mem2_control_reg[9:0]};

AVIRAL MITTAL ISLI 2005/2006 21

IPBA : VC Evaluation Assignment

4’b0001 : hrdata[31:0] <= {22’b0, mem3_control_reg[9:0]};
Hence the Assessment for this guidelinAlisays.

RMM2 5.2.12 Use meaningful lables Max Scer34

R5.2.15.1:VHDL Not Applicable, Score = 10
Gb5.2.15.2:VHDL Not Applicable, Score = 2

R5.2.15.3
Table 34: G 5.2.15.3
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.2.15.3 Each instance labeled with a meaningfuR A 10 10 N/A
name

Comment: There are 2 instances in all in the RTL, and each of them have been given meaningful
names as it is evident form the following lines of code:

ahb_external_memory_registers #(tm_prop)

i_ahb_ext_mem_reg

ahb_external_memory_control #(tm_prop, par_little_endian)

i_ahb_ext_ mem_con

Hence the Assessment for this guideline is Always

G5.2.154
Table 35: G 5.2.15.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.2.154 Each Instance labeled U_<name> G N 2 0 N/A

Comment: Although the Author has tried to do something like this, but instead of ‘U_’ he has
used ‘i, so this guideline is not followed. The instantiations are quoted while describing the
R5.2.15.3 above, and is not being repeated here.

Hence the Assessment for this guidelinBléver

AVIRAL MITTAL ISLI 2005/2006 22

IPBA : VC Evaluation Assignment

R5.2.15.5
Table 36: R 5.2.15.5
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
5.2.155 Signal, Variable or entity names are ngt G S 10 8 unig.pl
duplicated

Comment : The RTL(s) follow this guideline to a great extent, however, following were 3 viola-
tions reported by the scriptniq.pl’.

The 3 signalshready_resp’,hresp’, ‘hrdata’ which are declared as ‘reg’ type appear in both the
2 files:ahb_external_memory_registers.v_atidahb_external_memory_control.v_.rtl

Hence the Assessment for this guidelin8asnetimes

RMM2 5.3 Coding for Portability: Max Scor e 42

RMM2 5.3.1 For VHDL Only Not A pplicable Max Score 24

RMM2 5.3.2 No hare coded Numeric \lues Max Scoe 2

G5.3.2.1 i
Table 37: G 5.3.2.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.3.2.1 No Hard-Coded Numeric Values in yoyr G N 2 0 hard-
design (with possible exception of 1 and code.pl
0)

Comment: None of the RTL(s) follow this guideline strictly. All the 3 files use numeric value in
abundance. Its very difficult to check this manually, so a script ‘hardcode.pl’ was used for report-
ing all the violations form all the files. The log generated by the script is given in the appendix D
showing all the violations reported by the script.

This point needs some elaboration. There can be many types of hard coding. In all 4 types of hard-
coding were checked in the RTL(S)

1) Using a Numeric value in signal width declaration: Example

reg [7:0] mysig;//'7" is hardcoding

2).Using a Numeric value before the tick(*) while assigning a vector type: Example:

mysignal <= 10’d255/ ‘10’ is hardcoding.

3). Using a Numeric value after the tick(‘) while assigning a vector type: Example:

mysignal <= 10'd100{/ ‘255’ is hardcoding.

4) Using a Numeric value to expand a vector: Example:

AVIRAL MITTAL ISLI 2005/2006 23

IPBA : VC Evaluation Assignment

mysignal <= 100{1’b1}// ‘100’ is hardcoding
All the four types of hardcoding were checked by the script.

Corrections: Following are a few examples which are hard coded, and their corrections.
input [31:0] haddr;//: Not Recommended.
input [wi-1:0] haddr;// Recommended, where ‘wi’ is a parameter which is equal to 32

Another Example
reg [3:0] reg_addr//Not Recommended
reg_addr <= 4’b0000d{Not Recommended
reg [width-1:0] reg_addrfRecommended
reg_addr <= {(width){1’'b0}}{/Recommended

Hence the Assessment for this guidelinsléver

RMM2 5.3.3 For VHDL Only Not A pplicable Max Score 2

RMM2 5.3.4 Include Files: Max Scoe 2

G5.34.1
G5.34.1 }
Table 38: G 5.34.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.3.4.1 If Verilog, then keep the ‘define state- | G N 2 0 N/A
ments for a design in a single separate ffile

Comment: Two out of 3 RTL files use ‘define statements locally. Here is an example coded from
one of the RTL(s)

‘define EMR_IDLE 3'’b000

‘define EMR_ERROR_WAIT 3'b001

‘define EMR_ERROR_READY 3'b010

‘define EMR_READ_WAIT 3'b011

‘define EMR_READ 3'b100

‘define EMR_WRITE 3'b101

Whereas there should be a separate file containing all the ‘define statements, as per the guideline.

Hence the Assessment for this guidelinsléver

RMM2 5.3.5 Avoid Embedding dc_shell Scripts Max Scar 2

AVIRAL MITTAL ISLI 2005/2006 24

IPBA : VC Evaluation Assignment

G5.3.5.1)
Table 39: G 5.3.5.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.35.1 No dc_shell scripts in design(except for G A 2 2 N/A
noted exceptions in RMM2)

Comment: No occurrence of ‘dc_shell’ commands reported in any of the RTL(s). The IP is inde-
pendent of these.

Hence the Assessment for this guideline is Always

RMM2 5.3.6 Technology-Independent Libraries Max Scoe 4

G5.3.6.1)
Table 40: G 5.3.6.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.3.6.1 Technology Independent Library(e.g | G A 2 A N/A
DesignWare Foundation Library) used to
maintain technology independence.

Comment: Its recommended that there shouldn’t be any instantiations of gates from a library
which is technology dependent. However the designer may choose to instantiate gates from a
technology independent library, such as G-TECH (synopsys) so that the RTL code remains porta-
ble.

However no gate/component instantiations were found form any kind of library in any of the
RTL(s), which means that the code is portable, technology independent.

Hence the Assessment for this guidelinAlisays

G5.3.6.2 }
Table 41: G 5.3.6.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.3.6.2 No instantiated gates in the design, or| G N 2 0 N/A

module-isolated technology specific gates
if instantiated gates are absolutely necgs-
sary

AVIRAL MITTAL ISLI 2005/2006 25

IPBA : VC Evaluation Assignment

Comment: If a designer has to instantiate gates in a design, he should write a isolated module,
which will have all the instantiations to make the code portable as far as possible. However in this
IP since there are not instantiated gates, it can be said that this guideline was followed strictly.
Hence the Assessment for this guidelinAlisays

RMM2 5.3.7 Coding Dr translation. for VHDL R TL Not A pplicable here Max Scoe 6

RMM2 5.4 Guidelines br clocks and resets Max Scoz 38

RMM2 5.4.1 Avoid Mixed clock edges Max Scar 24

G54.1.1 .
Table 42: G5.4.1.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
54.1.1 Single clock phase flip-flops(eigher +ive G A 2 2 N/A
or -ive edge) used throughout the design

Comment: All the RTL(s) fo the IP follow this guideline strictly. A positive edge is always used
throughout the IP. There are no occurrence® g¢hegedge clkh any of the RTLs
Below are some of the examples form RTL files of the IP, which show@r{lyosedge clk)as
been used.
always @(posedge hclk)
begin
if (~hreset_n)
begin
memO_control_reg[9:0] <={4’b1111, 4'b1111, 2’bl11};
end // if (~hreset_n)
else
begin
if (memO_control_reg_sel && write_strobe)
begin
mem0O_control_reg[9:0] <= hwdata[9:0];
end // if (memO_control_reg_sel && write_strobe)
end // else: lif(~hreset_n)
end // always @ (posedge hclk)
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 26

IPBA : VC Evaluation Assignment

R5.4.1.2 _
Table 43: R5.4.1.2
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
54.1.2 If both positive-edge and negative-edge R N/A 10 10 N/A
triggered flip-flops are used, then the
worst case duty cycle is modelled for tim-
ing analysis and synthesis
Comment: Only positive edge used, So not applicable here.
R5.4.1.3 _
Table 44: R 5.4.1.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
54.1.4 If both positive-edge and negative-edge R N/A 10 10 N/A
triggered flip-flops are used, then the
assumed duty cycle is documented for the
user.
Comment: Only positive edge used, So not applicable here.
G5.4.1.4 -
Table 45: R 5.4.1.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
54.1.4 If both positive-edge and negative-edge G N/A 2 2 N/A

triggered flip-flops are used, then they a
separated into different modules.

re

Comment: Only positive edge used, So not applicable here.

RMM2 5.4.2 Avoid Clock Buffers Max Score 2

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

G5.4.2.1 ;
Table 46: G 5.4.2.1
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
5421 No clock buffers in design; inserted afterG A 2 2 N/A
synthesis in physical design stage

Comment: Clock buffers are usually desired when a single gate is seen to drive high loads. Clock
buffers are also used to balance the clock skew throughout the design. But they are never coded in
RTL or instantiated in RTL. They are automatically inserted where ever needed in RTL to GDSI|I
flow.

In the given IP, no occurrence of clock buffers are reported.

Hence the Assessment for this guidelinAlisays

RMM2 5.4.3 Avoid Gated Clocks Max Scoe 2

G5.4.3.1 .
Table 47: G 5.4.3.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
543.1 No gated clocks in design G A 2 2 N/A

Comment: Gated clocks are useful to save power in an IP. While a block of sequential logic is not
active at a point of time, the clock of this block can be shut off, which saves power. In the design
flow these can be inserted by the tools.hence manual clock gating is not recommended In the
given IP, no occurrence of gated clocks are reported.

Hence the Assessment for this guidelinAlisays

RMM2 5.4.4 No Intemally generated clocks Max Sca 2

AVIRAL MITTAL ISLI 2005/2006 28

IPBA : VC Evaluation Assignment

G5.4.4.1 -
Table 48: G 5.4.4.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5441 No internally generated clocks in design G A 2 2 N/A

Comment: In the design flow, all the clocks which are required are generated mostly in ‘analog’
area, where a pll is used to generate all the desired clocks with different frequencies. Hence, it is
recommended, that there should not be any internally generated clocks, which usually a problem
in DFT.

In the given IP, no occurrence of internal division or multiplication of any clocks are reported.
Hence the Assessment for this guidelinAlisays

RMM2 5.4.5 Gated clocks and lev power design Max Scoe 4

G5.4.5.1 _
Table 49: G 5.45.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.4.5.1 If a gated clock, or an internally generateds N/A 2 2 N/A

clock or reset, must be used, then the
clock and/or reset generation circuitry is|a
separate module at the top level of the
design

Comment: In the given IP, no occurance of internally generated resets or clocks are reported.
So this guideline is not applicable here.

G5.4.5.2 .
Table 50: G 5.4.5.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
545.1 If design requires a gated clock, then | G N/A 2 2 N/A
model it using synchronous load registers,
as recommended (RMM2, P.95)

Comment: In the given IP, no occurance of internally generated resets or clocks are reported.
So this guideline is not applicable here.

AVIRAL MITTAL ISLI 2005/2006 29

IPBA : VC Evaluation Assignment

RMM2 5.4.6 Avoid Internally generated resets Max Scog 4

G5.4.6.1 _
Table 51: G 5.4.6.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.4.6.1 No internally generated, conditional G N/A 2 2 N/A
resets. Entire macro resets at one time

Comment: In the given IP, no occurance of internally generated resets are reported.
So this guideline is not applicable here.

G5.4.6.2 .
Table 52: G 5.4.6.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
54.6.1 If a conditional reset is required, then gre&s N/A 2 2 N/A

ate a separate signal for the reset line and
isolate its generating logic in a separatg
module

Comment: In the given IP, no occurance of internally generated resets are reported.
So this guideline is not applicable here.

RMM2 5.5 Coding for Synthesis Max Scoe 50

RMM2 5.5.1 Infer Reqisters Max Scoe 2

G5.5.1.1 ~
Table 53: G 5.5.1.1
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
55.1.1 Technology-independent RTL style infefr<G A 2 2 N/A
registers(flip-flops) for sequential logic

Comment: RTL coding style should be such that, it should be independent of any type of flip-
flops. It should be left up to the synthesis tool to decide what flip-flops will fit for the RTL pro-

vided.

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

This guideline has been strictly followed by the RTL(S) as we do not see any instantaitions for
flip-flop types in the design.
Hence the Assessment for this guidelinAlisays

RMM2 5.5.2 Avoid Latches Max Scoe 2

R5.5.2.1 _
Table 54: R 5.5.2.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.5.2.1 No Latch inference in RTL, especially | R A 10 10 N/A
avoiding inferring R-S latches.

Comment: RTL coding style should be such that, there should be no unintentional latches inferred
by the synthesis tools. Usually an combinational process with ‘if’ or ‘case’ statement, within a
combinational procedure, when not written carefully results in unwanted latches. That is to say
that if in a combinational process, afi statement has not been given‘alse’ statement, or in a

‘case’ statement, if all the possible choicesaafse’ are not mentioned and there is‘default’
corresponding to the case, then the synthesis tool tries to preserve the values, as it has no info as
what to do, and it puts latches in the design. For example:

always @ (mysignall or enable)
begin
if((mysignall) && (enable))
begin
outputl <= mysignall;
end
end

In the above example, the synthesis tool has no info on what to do if the corfif{itigsignall)
&& (enable))is false, and it tries to preserve the value assignéeditiputl’ when the above said
condition is true. To preserve the values, it puts a latch.

This guideline has been strictly followed by the RTL(s) as eWérgtatement has arelse’ and

every‘case’ statement has‘default’
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 31

IPBA : VC Evaluation Assignment

G5.5.2.2 i
Table 55: G 5.5.2.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.2.2 Consistent coding techniques as recom-G A 2 2 N/A
mended to avoid latch inference (RMMZ,
P.100)

Comment. Please see sec 5.2.2.1 above.

Since in every combinational process/block, output is specified for all input conditions, it can be
said that the IP follows this guideline strictly.

Hence the Assessment for this guidelinAlisays

RMM2 5.5.4 Avoid combinational feedback Max Scoe 2

G5.5.1.1 }
Table 56: G 5.5.4.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5541 No combinational feedback; that is, the G A 2 2 N/A
looping of combinational process.

Comment: Feedback in the design without any register/latch are not recommended. All the
RTL(s) follow this guideline strictly. There are no combinational feedback reported in any of the
RTL of the given IP.

Hence the Assessment for this guidelinAlisays

RMM2 5.5.5 Specify Complete Sensitity lists Max Score 2

G5.5.1.1 ~
Table 57: R 5.5.5.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5,551 Complete sensitivity list in each R A 10 10 N/A
porcess(VHDL) or always(Verilog)
blocks

Comment: Sensitivity lists are very important to simulation tools, where as synthesis tools com-
pletely ignore them. So in order to match post synthesis simulations to RTL simulations, it is rec-
ommended that all the signals/variables which are read in a given ‘always’ block, must be present
in sensitivity list of that ‘always’ block. For example: consider an always block shown below

always
begin

AVIRAL MITTAL ISLI 2005/2006 32

IPBA : VC Evaluation Assignment

myoutput <= (inputl || input2) && (input3 || input4)

end

will synthesize correctly, where as when it will be simulated, ‘myoutput’ will never change. Its
because this ‘always’ block reads 4 inputs and none of them are present in the sensitivity list of
the ‘always’ block. So there will be a potential mismatch between pre and post synthesis simula-
tions.

In the given IP, no incomplete sensitivity lists are reported.

Hence the Assessment for this guidelinAlisays

G5.5.5.2 }
Table 58: G 5.5.5.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.5.2 Only necessary signals in each process G A 2 2 N/A
sensitivity lists, as defined (RMM2,
P.105)c

Comment: If a process(VHDL) or a ‘always’ block in verilog is sequential, then the sensitivity list
should ONLY contain clock signal and a reset signal. Reset signal can only be present if it is a
async reset.

In the given IP, this guideline is followed strictly. The IP does not make use of any async reset, so
all the sequential process have ONLY ‘hclk’ in their sensitivity lists.

Hence the Assessment for this guidelinAlisays

RMM2 5.5.6 Blocking and Non-Blocking Assignments Max Scer2

R5.5.6.1 _
Table 59: R 5.5.6.1
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
5.5.6.1 If Verilog, then nonblocking assignmenitsk A 10 10 blocking.pl
always used in always @ (posedge clk
blocks for synthesis

Comment: Out of the two types of assignment statements in verilog, blocking and non blocking
assignments, it is recommended that always use non-blocking assignments in any process/block
which is sensitive to clock. i.e that synthesizes in clocked registers. A perl script was used to
check this calletblocking.pl’ which reported no occurrence of blocking assignments in any
‘always’ block which is sensitive to the system cloo&lk’.

This guideline has been strictly followed by the RTL(S) : Here are some examples form the
RTL(s) which shows that this guideline has been followed.

always @ (posedge aviclock)

AVIRAL MITTAL ISLI 2005/2006 33

IPBA : VC Evaluation Assignment

begin
current_state <= #tm_prop next_state;
if(hreset_n == 0)
begin
current_state <= #tm_prop ‘ST_IDLE;
end
end
always @(posedge hclk)
begin
if (~hreset_n)
begin
memO_control_reg[9:0] <= {4'b1111, 4'b1111, 2’b11};
end // if (~hreset_n)
else
begin
if (memO_control_reg_sel && write_strobe)
begin
memO_control_reg[9:0] <= hwdata[9:0];
end // if (memO_control_reg_sel && write_strobe)
end // else: lif(~hreset_n)
end // always @ (posedge hclk)

We can see that assignment has always been done using ‘<=" which signifies a non-blocking

assignment, which is recommended. No occurrence of ‘=" which signifies a blocking assignment
which is not recommended.

Hence the Assessment for this guidelinAlisays

RMM2 5.5.7 Infer Reqisters Max Scoe 2

G5.5.7.1 }
Table 60: G 5.5.7.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
55.7.1 If VHDL, then signals used instead of | G N/A 2 2 N/A
variables for synthesizable RTL

Comment: For VHDL not applicable here.

RMM2 5.5.8 Case Statement instead of if-then-else Statements Scar

AVIRAL MITTAL ISLI 2005/2006 34

IPBA : VC Evaluation Assignment

G5.5.8.1 B
Table 61: G 5.5.8.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.8.1 Case statements used rather than an if-G S 2 1 N/A
then-else statement wherever appropriate

Comment: It is recommended that while writing a conditional statement, a ‘case’ statement is
used instead of several ‘if-then-else’. A vector is formed by concatinating the variables on which
the output depends, and then the newly formed vector is used in a case statement to cover all the
possible input conditions. For example consider the following if statement
if(myvarl)
outputl = inputl;
else if(myvar2)
outputl = input2;
else if(myvar3)
outputl = input3;
else if(myvar4)
outputl = input4;
else
outputl =1'bx;
end

Now using this has a disadvantage that inputl is prioritised against all other imput2is pri-
ortised againgnput2andinput3, input3is prioritised againshput4, andinput4 gets least prior-
ity. Unless the priorities are deliberately needed, we would use the following ‘case’ statement to
implement this:
case({myvarl,myvar2,myvar3,myvar4})
4’b1000: outputl=inputl;
4’b0100: outputl=input2;
4’b0010: outputl=input3;
4’b0001: outputl=input4;
default: outputl=1'bx;
endcase
this will give equal priority tdinputl’)input2’’input3’,input4’.
Post synthesis of the ‘if’ implementation will result in a longer critical path as shown in Figure 1,
whereas post synthesis of the ‘case’ implementation will result in a shorter critical path as shown
in Figure2. Also ‘if’ implementation is prioritised, whereas ‘case’ statement implementation is
parallel.

AVIRAL MITTAL ISLI 2005/2006 35

IPBA : VC Evaluation Assignment

outputl

Figure 1: ‘if’ statement Implementation. Note that myvar4 is not used.

myvar 4>
Irnputd4 =
outputl

myvarll =
ITnputl] >

L]

myvarz

YrputZ >

Figure 2.: ‘case’ statement Implementation.

AVIRAL MITTAL ISLI 2005/2006 36

IPBA : VC Evaluation Assignment

This guideline has been followed by the RTL(s) but not always. Here are some examples where
‘else if’ can be noticed, which may have been written using case statement.

if (error_condition)

begin
slave_state <= ‘EMR_ERROR_WAIT;
hready_resp <= 1'b0;
hresp[1:0] <= 2'b01;

end // if (error_condition)

else if (hwrite) //write

begin
slave_state <=‘EMR_WRITE;
hready resp <=1'bl,
hresp[1:0] <= 2'b00;
write_strobe <= 1'bl,;
reg_addr[3:0] <= haddr[3:0];

end // if (hwrite)

else

begin
slave_state <='EMR_READ_WAIT;
hready resp <= 1'b0; // wait state
hresp[1:0] <= 2'b00;
read_strobe <=1'bl;
reg_addr[3:0] <= haddr[3:0];

end // else: lif(hwrite)

Hence the Assessment for this guidelin8asnetimes

RMM2 5.5.9 Infer Reqgisters Max Scoe 2

G5.5.9.1 a
Table 62: G 5.5.9.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.5.9.1 HDL description for state machines sepd S 2 1 N/A

rated into two processes, one for the cgm-
binational logic and one for the sequential
logic

Comment: The way state machines should be coded in RTL is such that, the combinational part
should be made independent to the sequential part as far as possible. That is there should be dif-
ferent processes for sequential part and the combinational part. This gives a better chance to the
synthesis tool for better optimization. Figure 3 below shows the structure clearly.

AVIRAL MITTAL ISLI 2005/2006 37

IPBA : VC Evaluation Assignment

ps

Figure 3 Recommended structure of a State Machine coded/realized in RTL

Procedure 1 should be coded like this:

always @ (all_inputs or ps)
begin
ns <= f(ps,inputs);
end
Where f(ps,inputs) means function of ‘ps’ i.e present state, and ‘inputs’ i.e all the inputs to the
state machine

Procedure 2 should be code like this:
always @ (posedge clk)
begin
ps <=ns;
end

Where ‘ps’ is the present state of the state registered, and ‘ns’ is the calculated next state that
would be loaded in the present state register at each clock edge.

Not all the state machines in the given IP, follow this guideline.

AVIRAL MITTAL ISLI 2005/2006 38

IPBA : VC Evaluation Assignment

Following is an example where this guideline is followed.
always @ (b_error_condition or b_transfer_on_bus
or b_wait_states_left or current_state or transfer_type)
begin
next_state <= ‘ST_ERROR_START,
case (current_state)

The above code corresponds to Procedurel, in figure 3.

Following is an example where this guideline is NOT followed:

/I State update
J] e e
always @ (posedge hclk)
begin
current_state <= #tm_prop next_state;
if(hreset_n == 0)
begin
current_state <= #tm_prop ‘ST_IDLE;
end
end

The above code corresponds to Procedure2, in figure 3.
always @(posedge hclk)
if (~hreset_n)
begin
slave_state <='‘EMR_IDLE;
hready resp <=1'bl,;
hresp[1:0] <= 2'b00;
read_strobe <= 1'bO0;
write_strobe <= 1'b0;
reg_addr <= 4’h0000;
end
else
case (slave_state)
‘EMR_IDLE:
I
/I When a valid bus cycle is taking place (htrans not
/[IDLE or BUSY) on the AHB, if the hsel signal is
/I asserted when hready is high then the target for the
Il bus cycle is the AHB slave.
I
/l'If an error condition exists then the transfer is
/I not allowed and an ERROR response will be issued.
/I Otherwise the transfer must be a valid read or
Il write cycle, and is handled accordingly.

AVIRAL MITTAL ISLI 2005/2006

39

IPBA : VC Evaluation Assignment

1l
/I The state machine remains in the IDLE state while no
/ transfers are pending.

begin
if (hsel && hready && (htrans[1] == 1'b1))
/I Transfer request currently on the bus
if (error_condition)
begin
slave_state <= ‘EMR_ERROR_WAIT;
hready_resp <= 1'b0;
hresp[1:0] <= 2'b01;
end // if (error_condition)
else if (hwrite) //write

We can clearly see that this is an implicit state machine. There is a single sequential procedure as
opposed to 2 procedures which is not in line with what is recommended in this guideline.
Hence the Assessment for this guidelin8asnetimes

G5.5.9.2 VHDL qguideline, Not applicable hez

G5.5.9.2.a _
Table 63: G 5.5.9.2a
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.9.2a In Verilog, use ‘define statements to G A 2 2 N/A
define the state vector..

Comment: All RTL(s) follow this guideline strictly. ‘define statements are used to define the state
vector always. As an example, following code is re-produced here showing that the guideline is
indeed followed.

‘define ST_IDLE 6’b000001

‘define ST_ERROR_START 6’b000010
‘define ST_READ_WAIT 60000100

‘define ST_WRITE_ADDR 6’0001000
‘define ST_WRITE_WAIT 6’b010000

‘define ST_READ_ADDR 6’b100000
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 40

IPBA : VC Evaluation Assignment

G5.5.9.3 _
Table 64: G 5.5.9.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.9.3 FSM logic and non-FSM logic separatedG N 2 0 N/A
into different modules.

Comment: 2 out of 3 RTL files has state machines in them, and both of the modules if, they have
to follow this guideline, must not have anything else in them. All the logic apart from the FSM
must be done in new module(s). It is also seems difficult and may be a bit un-necessary to follow
this guideline, because this will need a creation of another module for no good reason other than
just following this guideline.

Since this guideline is not followed in the given IP, the Assessment for this guiddlieeeis

G5.5.94 _
Table 65: G 5.5.9.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.5.94 Assign a default state for the state G A 2 2 N/A
machine

Comment: A ‘default’ assignment is always expected in a state machine, for the state vector,
which facilitates to define the power up value of the state-vector. There are 2 FSMs in the design,
and a ‘default’ assignment is seen in both of them. Following is the code re-produced here from
the file ‘ahb_external_memory_control.v’ghowing the ‘default’ assignment. Note that the use

of a verilog ‘default’ key word isot being made here, yet there is a default assignment. The
‘bold’ text highlights the line which does the ‘default’ assignment.

always @ (b_error_condition or b_transfer_on_bus
or b_wait_states_left or current_state or transfer_type)
begin
next_state <='‘ST_ERROR_START,
case (current_state)

‘ST_IDLE: begin

While the code from the other filalib_external_memory_registers.v’,rshown below, in fact
uses verilog ‘default’ key word for the default assignment.

AVIRAL MITTAL ISLI 2005/2006 41

IPBA : VC Evaluation Assignment

default:
/I The default case is included to ensure correct
/I recovery from illegal states.

begin
slave_state <= ‘EMR_IDLE;
hready_resp <= 1'b1;
hresp[1:0] <= 2’b00;
end // case: default
/I surefire coverage_on
[Iverisureon

Hence the Assessment for this guidelinAlisays

RMM2 5.6 Partitioning f or Synthesis Max Scoe 22

RMM2 5.6.1 Reqister all outputs Max Scoe 2

G5.6.1.1 i
Table 66: G 5.6.1.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.6.2.1 For each block of a hierarchial design, alc A 2 2 N/A
output signals from the block come
directly from registers

Comment: The RTL should be written such that, all outputs from it must directly come out from
registers. This will then ensure that all outputs from the block are glitch free, and have a defined
relationship with the clock. All RTL(s) in the IP follow this guideline strictly. Here is an examples

of output port which are seen coming directly from an register. This example shows that a port
‘read_only; which is connected directly tonemO_control_reg[1] which in turn is being

updated in a clocked procedure. This example is deliberately chosen, to show that it is not neces-
sary to declare a port as a ‘reg’ type(every portis a ‘wire’ type by default in verilog, unless a ‘reg’

is declared using the same name as of the port), if it needs to be coming from a register.

output [3:0] read_only; // Active high level outputs. These are used
assign read_only[0] = memO_control_reg[1];
always @(posedge hclk)
begin
if (~hreset_n)
begin
memO_control_reg[9:0] <={4’b1111, 4'b1111, 2’b11};
end // if (~hreset_n)
else

AVIRAL MITTAL ISLI 2005/2006 42

IPBA : VC Evaluation Assignment

begin
if (memO_control_reg_sel && write_strobe)
begin
memO_control_reg[9:0] <= hwdata[9:0];
end // if (memO_control_reg_sel && write_strobe)
end // else: lif(~hreset_n)
end // always @ (posedge hclk)

No occurrence of any output port in RTL(S) are reported with do NOT come directly from clocked
register.
Hence the Assessment for this guidelinAlisays

RMM2 5.6.2 Related Combinational logic in a single module Max Scer2

G5.6.2.1 }
Table 67: G 5.6.2.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
56.2.1 Related combinational logic placed G A 2 2 N/A
together in the same module

Comment: To give the synthesis tool a better chance to epitomize the combinational logic, it is
recommended that all the related combinational logic should be placed together in a single mod-
ule. In the given IP only one filahb_external_memory_control.vittlas combinational logic

inside it, which suggests that the author has followed this guildeline strictly.

Hence the Assessment for this guidelinAlisays

RMM2 5.6.3 Separate Modules That Hee Different Design Goals Max Scar 2
R5.6.3.1

Table 68: G 5.6.3.1

RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score

5.6.3.1 Critical path logic isolated in a separat¢ G N/A 2 2 N/A
module from non critical path logic

Comment: To give the synthesis tool, different constraints for different requirements, it is recom-
mended that the part of design which is timing critical should be separated in a different module
with the part of the design which might be area critical. The area critical part can be kept separate
module, so that the designer can assign different constraints to different modules as per the reqiu-
rement. If this guideline is followed, then the timing critical module can be epitomized for speed,

AVIRAL MITTAL ISLI 2005/2006 43

IPBA : VC Evaluation Assignment

which might require more area. Other parts of the design can then be epitomized for area sepa-
rately, giving a better design overall.

The given IP doesn’t seem to have very long critical paths. No multiplication or addition or any
other arithmetic function is seen in the IP, which suggests that this guideline is more or less not
applicable here.

Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.4 Asynchmonous Logic Max Scoe 2

G5.5.2.1 i
Table 69: G 5.6.4.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.6.4.1 Asynchronous logic is avoided G A 2 2 N/A

Comment: No Async logic in the design. ALL RTL(s) follow this guideline strictly.
Hence the Assessment for this guidelinAlisays

G5.5.4.2 }
Table 70: G 5.6.4.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.6.4.2 If Asynchronous logic is used, thenitig G N/A 2 2 N/A

partitioned into a separate module and
modelled in a behavioural rather than a
structural style as suggested(RMM,
P.93)e

Comment: No Async logic in the design.
Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.5 Arithmetic Operators: Merging resouices Max Scoe 2

G5.6.5.1 }
Table 71: G 5.6.5.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.6.5.1 Partition arithmetic equations to leverag&s N/A 2 2 N/A
automatic resource sharing in synthesig

Comment: No arithmetic operators found in the IP.

AVIRAL MITTAL ISLI 2005/2006 44

IPBA : VC Evaluation Assignment

Hence the Assessment for this guideline is Not Applicable.
RMM2 5.6.7 Avoid Point-to_poing Exceptions and lalse Raths Max Scoe 8
G5.6.7.1

Table 72: G 5.6.7.1

RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score

5.6.7.1 No Multicycle paths in your design G A 2 2 N/A

Comment: Consider a simple block of combinational logic between two registers R1 and R2, with
the delay T1, where the time period of the clock is Tclk. In some cases, if T1>T2, we may be able
to get away with this timing violation by declaring the path between R1 and R2 as what is called a
multicycle path. This of course requires that the output of R2 is not used in each clock cycle. A
multicycle path is a risky design practice, which can easily produce serious errors if it is not done
very carefully. The guideline recommends that these should simply be not present. In the given IP,
there is no comment in the RTL or a mention of multicycle path in the documentation.So we can
say that there are no multicycle paths in the given IP.

Hence the Assessment for this guidelinAlisays

G5.6.7.2 _
Table 73: G 5.6.7.2
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.6.7.2 If a multicycle path must be used, then| G N/A 2 2 N/A

point-to-point exceptions maintained
within a single module and well-com-
mented

Comment: Since there are no multicycle paths in the given IP, the above guideline does not apply
here.

Hence the Assessment for this guideline is Not Applicable.

G5.6.7.3)
Table 74: G 5.6.7.3
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.6.7.3 No false paths in the design G A 2 2 N/A

Comment: A false path is a datapath, which is effectively not active in a design. An example of
false path is shown below:

AVIRAL MITTAL ISLI 2005/2006 45

IPBA : VC Evaluation Assignment

d_in —‘
0

In the figure 4 sHOAM @KoV RAFAENRERVRRRVE oM IAneld tHE dBtiveanfaheed2aihn,

because only one of the tristate buffers can be enabled at a given time. But the static timing analy-
sis tool has no way of knowing this automatically. These kind of paths are called false paths, and
must be explicitly told to the STA tool, wherever they are present. There may be several other
kinds of false paths in the design, the above example is just one of those. Again using them in the
design is risky, as inappropriate use can easily result in setting a ‘false_path’ to a path which is not
actually a false path. The guideline says simple avoid them. Since there is no mention of any false
path either in the document or in the RTL or synthesis scripts, we can say that this guideline has
been strictly followed. It might be that there has been no need of declaring false paths, and this is
just a coincidence that there are no paths which are declared as false, but for the IP evaluation pur-
poses, there is no false paths no matter what the reason is.

enable

Hence the Assessment for this guidelinAlisays

G5.6.7.4 }
Table 75: G 5.6.7.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.6.7.4 If a false path exists, it is documented? G N/A 2 2 N/A

Comment: No false paths reported either in the document, RTL or synthesis scripts.
Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.8 Eliminate Glue Logic Max Scoe 2

AVIRAL MITTAL ISLI 2005/2006 46

IPBA : VC Evaluation Assignment

G5.6.8.1)
Table 76: G 5.6.8.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.6.8.1 No instantiated gate-levle logic at the tpfg> A 2 2 N/A
level of the design hierarchy

Comment: The top level RTL file is not expected to have gate level instantiations. This is because
this kind of gate level logic inhibits the proper optmization by the synthesis tool.

There is no glue logic in the top level file ‘ahb_external_memory.v_rtl’

Hence the Assessment for this guidelinAlisays

RMM2 5.7 Designing with Memories Max Scoe 2

Table 77: G 5.7
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
5.7.1 Address and data registers and the writeG A 2 2 N/A
enable logic partitioned into separate
modules

Comment: IF an IP is written to deal with memories then in order that the IP works with both
types of memories sycn and async, it is recommended that the write enable logic is in a different
module to the module haveing address and data registers.The given IP does deal with memories.
The registers are in one modubhb_external_memory_registeasd the control(i.e wiret enable

etc) are in a different module calleahb_external_memory_control

Hence the Assessment for this guidelinAlisays

RMM2 5.8 Code Pofiling Max Score 2

Table 78: G 5.8
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
5.8.1 Use code profiling to improve RTL G A 2 2 N/A

Comment: After an RTL is written, simulation is performed to check the functionality of the
design. But it is often advised profiling tools, which can measure the RTL code coverage using

AVIRAL MITTAL ISLI 2005/2006 47

IPBA : VC Evaluation Assignment

your testbenche(s) or testvector(s). These tools report the frequency at which a line in RTL code is
hit using your testvectors. Now if the frequency comes out to be 0 for any line, then either this line
is redundat or the test vectors are not exhaustive enouth. This information can give the designer a
hint of any problems that might be there in the IP.

The RTL code does suggest that code profiling is used. The commeneritkeeoff andrer-

isureon suggests, that the author of the IP has take proper care of improving the code coverage.
A script is also provided for measuring the code coverage cdllecbverage.scrigt however

due to the expired license of Verisure(from Verisity) the script did not run, and code coverage
results cannot be analysed.

Hence the Assessment for this guidelinAlisays

2.3.2a: Comment upon werall results and quality of RTL

The total Score obtained from the openmore excel sheet for this section “RTL Coding Guidelines”
is evaluated to b201/240 = 83.75 %.

Over the quality of RTL was found to be OK. | will discuss the negative and positive remarks
here. First | will discuss negative remarks and finish off positive remarks will be discussed.

Negative Remarks:
1). Use of constants in RTL for conditional assignments:
There exists a serious problem in the RTL which is unprofessional, and which may jeopardise the
market-ability of the RTL. The point brought herevisry important to improve the quality of the
RTL. That is the way constants are being used in the RTL of the given IP, and assigning signals
depending upon the value of those constants. The following ‘always’ procedure is re-produced
here which shows the problem.
always @ (haddr or hsel_mem)
begin
if CADDRESS_LOW_POWER_SELECT 0 ==1 && hsel_mem|[0] == 1)
begin :blk_low_power_adress_cap0
if (‘DATA_SIZE_0==001)
begin
haddr_gray capture <= binary2gray32(haddr); //Gray coding for 16 bit addressing
end // if (DATA_SIZE_0==001)
else if (DATA_SIZE_0==010)
begin
haddr_gray capture <= binary2gray16(haddr); //Gray coding for 16 bit addressing
end // if (DATA_SIZE_0==010)
else if (DATA_SIZE_0==100)
begin
haddr_gray_ capture <= binary2gray8(haddr); //Gray coding for 8 bit addressing
end // if (DATA_SIZE_0==100)
else
begin
haddr_gray_capture <= haddr;
end
end // block: blk_low_power_adress_captO

AVIRAL MITTAL ISLI 2005/2006 48

IPBA : VC Evaluation Assignment

else if CADDRESS_LOW_POWER_SELECT 1 ==1 && hsel_mem[1] == 1)

" end // always @ (haddr)

Now, we can see the use of two constants in the above procedure i.e

ADDRESS LOW_POWER_SELECT_ 0 and DATA_SIZE_0, and depending upon the value of
these constants the author is trying to assign the sigaadlf gray capture This is never done

in any professional IP. It doesn’t make any sense.

The problem here is to make the same IP useable in different scenarios. The proper way of doing
this is given below:

First write a generic function binary2gray, instead of 3 different functions binary2gray8,
binary2gray16, binary2gray32. Parameterise the function, and put it in a separate module. as
given below:
module bin2gray(haddr_bin, haddr_gray);

parameter width = 32;

parameter data_size = 2;

input [width-1:0] haddr_bin;

output [width-1:0] haddr_gray;

function [width-1:0] binary2gray;

input [31:0] haddr_bin; // Binary code address from amba ahb bus
reg [width-1:0] haddr_gray;

integer i;

begin
haddr_gray = {(width + 1){1'b0}};//Design Compiler complains that variable is not initialised
/'if 1 don’t put this in

haddr_gray[width-1] = haddr_bin[width-1];

for(i=0; i < data_size; i =i + 2) //i+2 because it should exit out of loop after 1 itration
haddr_gray[data_size-1] = haddr_bin[data_size-1];
for(i=1;i<data_size;i=i+1)

haddr_gray[data_size-2] = haddr_bin[data_size-2]*haddr_bin[data_size-1];
for(i = data_size; i <width-1; i=1i+ 1)
haddr_gray[i] = haddr_bin[i] » haddr_bin][i + 1];

binary2gray = haddr_gray;

end
endfunction //binary2gray

AVIRAL MITTAL ISLI 2005/2006 49

IPBA : VC Evaluation Assignment

assign haddr_gray = binary2gray(haddr_bin);
endmodule

Then use this function/module as shown below instead of the long not very useful ‘always’ block
shown above
‘ifdef ADDRESS_LOW_POWER_SELECT 2
bin2gray #(width, data_size) bin2gray_uO(.haddr_bin(haddr_bin), .haddr_gray(haddr_out));
‘else
assign haddr_out = haddr_bin;
‘endif
The first line ifdef ADDRESS_LOW_POWER_SELECTh2cks if somewhere the word
‘ADDRESS_LOW_POWER_SELECTis2efined, if yes, then ithaddr_outgets the value from
the generic functionbin2gray, otherwise haddr_out gets the value offaddr_bin
directly.Note that it is not required to check ttadue of constant, just weather it is defined some-
where or not will suffice. So a if a low power solution is required,
ADDRESS LOW_POWER_SELECWiRbe defined somewhere in the environment, if it is not
defined, then a low power solution will automatically be dropped.
The parameterdata_sizéreplaces the definition of the constant ‘DATA_SIZE_2’, which is
passed to the module containing the functlmnary2gray and depending upon the value of the
parameterdata_sizéthe generic functionbinary2gray actually performs one of the old three
functions binary2gray8, binary2grayl6or ‘binary2gray32
We see how the 82 lines of code in the RTL is now changed to 5 lines, which is one of the un-
objectionable way to do the things which are desired.
Following are the disadvantages or problems with the coding style used in the IP which are
addressed by the alternative way suggested above
* The old code produces several warning messages when read in a synthesis tool, complaining
about several branches which it says will ‘never be reached’. That is true because constants
are constants, they will never change.
» The code coverage will also be greatly reduced because again, several branches will never be
hit by any sets of test vectors.
* Meaningless synthesis results may result, because the code does not make sense in terms of
hardware mapping.

Conclusion: Never let RTL check a value of a constant and do things depending upon the value of
a constant. Its unprofessional and does not make any sense.

There are no other serious negative remarks.

Positve Remarks:

Leaving the point discussed above, the RTL quality is found to be good, with nearly 80% guide-
lines followed.

Another thing which is pointed out here is the use of comments whenever a ‘always’ block ends.
For example:

always @ (haddr or hsel_mem)

AVIRAL MITTAL ISLI 2005/2006 50

IPBA : VC Evaluation Assignment

begin

end // always @ (haddr)

Note the use of/f always @ (haddr)where the ‘always’ block ends. This is a very good practice
and makes the code very much more readable. This is an extra feature, which the author as intro-
duced apart from the guidelines, which helps the evaluator a lot.

Decision on IP based onlR coding guidelines
Purchase of the IP is recommended based on RTL coding guidelines, as long as the problem dis-
cussed above(i.e in negative remarks) are removed.

AVIRAL MITTAL ISLI 2005/2006 51

IPBA : VC Evaluation Assignment

Section 2.3.3 Maco Synthesis Guidelines

RMM2 6.2 Macro Synthesis Stratigy

RMM2 6.2.1 Macro Timing Budget

R6.2.2.1 _
Table 79: R 6.2.1.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
6.2.2.1 Timing budget for the macro developeda® N 10 0 N/A

part of the specification process, before
the design is partitioned into blocks and
before coding has begun.

Going through all the documentation, there were no mention of either timing budget or the clock
frequencies. There is no evidence of even the maximum or minimum frequency the design sup-
ports in any documentation, however in one of the synthesis script ‘synthesis.prj’ the frequency is
mentioned to be 200.00. But it definitely needs to be documented.

Hence the Assessment for this guidelinslever

RMM2 6.2.2 Sub block Timing Budget

R6.2.2.1 _
Table 80: R 6.2.2.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
6.2.2.1 Timing budget for each subblock in the R N 10 0 N/A

macro developed at the time the desigr is
partitioned into subblocks, and before

coding has begun.

Going through all the documentation, there were no mention of either timing budget or the clock
frequencies. There is no evidence of even the maximum or minimum frequency any of the sub
block supports

Hence the Assessment for this guidelinBléver

RMM2 6.2.4 Sub block synthesis Rycess 3 phases

AVIRAL MITTAL ISLI 2005/2006 52

IPBA : VC Evaluation Assignment

G6.2.4.1)
Table 81: G 6.2.4.1
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
6.24.1 The following subblock synthesis proc{ G N 2 0 N/A

ess is used: 1) Compile subblock, using
constraints based on budget; 2) Character-
ize-compile whole subblock, to refine
timing constraints and re-synthesize sup-
block; 3) Iterate if required.

Going through all the documentation, scripts, it can be said, that the above guideline is not fol-
lowed. There is no evidence of reading the design block by block in synthesis script. All the
blocks are read at once, and one pass synthesis is done.

Hence the Assessment for this guidelinsléver

RMM2 6.2.5 Macro Synthesis Pocess 3 phases

G6.2.5.1 _
Table 82: G 6.2.5.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
6.2.5.1 The following macro-level synthesis G N 2 0 N/A

process is used: 1) Compile each of the
subblocks, using constraints based on
budget; 2) Characterize-compile whole
macro to improve area and timing; 3) If
necessary, incremental compile per-
formed.

Again same as above.
Hence the Assessment for this guidelinsléver
RMM2 6.2.7 Presenve Clock and Reset Netarks

G6.2.7.1 _
Table 83: G 6.2.7.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
6.2.7.1 dont_touch_network specified on clock G N/A 2 N/A

and asynchronous reset networks and
included in the synthesis scripts for the
design - dc_shell scripts

AVIRAL MITTAL ISLI 2005/2006 53

IPBA : VC Evaluation Assignment

No dc_shell scripts provided. The design synthesis is limited to FPGA target only.

Hence the Assessment for this guidelinBlag Applicable
RMM2 6.5 Coding Guidelines br Synthesis Scripts

This section is omitted because ASIC synthesis script are not provided for the IP.
Hence the Assessment for this guidelinBlat Applicable

AVIRAL MITTAL ISLI 2005/2006

54

IPBA : VC Evaluation Assignment

Section 2.3.4 ¥rification Guidelines

RMM2 7 : Macr o Verification
RMMZ2 7.1 Overview of Macro Verification
7.1.3 : Subblock Simulation

R7.1.3.1 _
Table 84: R 7.1.3.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.13.1 All response checking is done automati-R A 10 10 N/A
cally (not by viewing waveforms)

Comment: Verification strategy seems to be quite exhaustive, as documented in
‘Environment_Statigy.pdf’. Although the small blocks does not use the self-checking system, i.e
text based system, but on the macro level, the testbench work with self-checking capability. Giv-
ing a high degree of satisfaction. Their monitors, Scoreboards and also random test strategy,
which all gave text results.

Hence the Assessment for this guidelinAlisays

G7.1.3.2 _
Table 85: G 7.1.3.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.1.3.2 All subblock test suites achieve 100% | G N/A 2 N/A
statement and path coverage as measured
by a test coverage tool.

Comment: Since the license of Verisure(from Verisity) has expired, the script given to do the cov-
erage analysis i.etl_coverage.scriptdid not return results.
Hence the Assessment for this guidelinBlat Applicable

RMM2 7.3 RTL Testbench Style Guide

RMM2 7.3.1: General Guidelines

AVIRAL MITTAL ISLI 2005/2006 55

IPBA : VC Evaluation Assignment

G7.3.1.2 ;
Table 86: G 7.3.1.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.3.1.2 Testbench code is partitioned into synth&s A 2 2 N/A

sizable and behavioral sections. Behavjo-
ral code is used to generate clocks and
resets and synthesizable code is used 1o
model a finite state machine that manipu-
lates and generates stimulus for the
design.

Comment: A high degree of partitioned is observed in the test bench. Very clear RTL style code is
observed in the testbench filahb_external_memory.v tlClearly clock generation and initial
values in ‘initial’ blocks are separated in the testbench. The rest of the code is RTL style.
Hence the Assessment for this guidelinAlisays

RMM2 7.3.2: Generating Clocks and Resets

G7.3.2.2
Table 87: G 7.3.2.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.3.2.2 Separate processes used for clock gene@- A 2 2 N/A
tion, data generation, and reset genera
tion.

Comment: Clock and Resets are indeed generated in separate processes. As it is evident from the
following lines quoted from the testbench fihb_external_memory.v'tb

repeat(6)@(posedge hclk);
hreset n<=1;
always
begin
#(CYCLE/2) hclk <= ~hclk;

end // always begin

Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 56

IPBA : VC Evaluation Assignment

G7.3.2.3
Table 88: G 7.3.2.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.3.2.3 If multiple asynchronous clocks, thena G N/A 2 N/A
separate process for each clock generation
is used.

Comment: No evidence of multiple clocks
Hence the Assessment for this guidelinBlas Applicable

G7.3.2.4 : VHDL coding guideline Not Avplicable here

G7.3.2.5
Table 89: G 7.3.2.5
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.3.2.5 Testbenches read and apply one vectgr G N/A 2 N/A
only per clock cycle.

Comment: This guide line needs detailed study of the testbench, so this is omitted from evalua-
tion.
Hence the Assessment for this guidelinBlat Applicable

G7.3.2.6
Table 90: G 7.3.2.6
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
7.3.2.6 Clocks used to synchronize stimulus geies A 2 2 N/A

eration. All data applied once every cycle
boundary with as few individual procesg
waits as possible.

Comment: The testbench is coded in RTL style. All procedures are clocked, stimulus is therefore
generated with respect to the clock. For example the following code reproduced from the test-
bench file ahb_external_memory.v_tb’ which clear shows this:
always@(negedge hclk)
begin
if(hreset_n == 0)
begin
hgrant_mO0 <= 1;

AVIRAL MITTAL ISLI 2005/2006 57

IPBA : VC Evaluation Assignment

hgrant._ m1 <= 0;
hgrant_m2 <= 0;

Hence the Assessment for this guidelinAlisays
RMM2 7.5 Timing Verification
7.5.1 : Use static timing analysis for timing verification

Comment: This guideline is followed, as it is evident from the document
‘Environment_Statigy.pdf’ . The tool used is given to be Synopsys’ Prime Time. However the
scripts are not given with the IP.

Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 58

IPBA : VC Evaluation Assignment

System Level Verification

RMM2 11.5 Prototyping

G 11.5.1 The macro has been implemented and verified on FPGA
The IP is basically targeted on FPGA

Hence the Assessment for this guidelinAlisays

G 11.5.3 The macro is silicon proven at speed
The IP is a soft IP, and is yet to go on silicon
Hence the Assessment for this guidelinBlag Applicable

RMM2 11.6 Gate Level Verification
11.6.2 Formal Verification

Gl1.6.2.1
Table 91: G 11.6.2.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
11.6.2.1 Macro follows naming convention G S 2 1 N/A
defined on p74, avoiding small or similgr
name

Comment: This guideline is followed to an extent. There are naming conventions used in verilog
coding, which are also documented, but the naming conventions do not match with the ones given
in RMM2.

For example RMM2 recommends I’ for output of registers. Which is not there in RTL, how-

ever, the use of similar type of conventions are present in RTL such as useaffor output sig-

nals.

Hence the Assessment for this guidelin8asnetimes

R11.6.2.2
Table 92: R 11.6.2.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.6.2.2 The functionality of the macro is not R A 10 10 N/A
changed by synthesis script

Comment: ASIC synthesis scripts are not provided, however the FPGA scripts are simple and
there is no evidence of any commands which can/may change the functionality of the design
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 59

IPBA : VC Evaluation Assignment

R11.6.2.3
Table 93: G 11.6.2.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.6.2.3 Pragmas (compiler directives) are used i® A 2 2 N/A
RTL code instead of synthesis script com-
mands

Comment: No such commands present in synthesis scripts
Hence the Assessment for this guidelinAlisays

G1l1.6.2.4
Table 94: G 11.6.2.4
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.6.24 Avoid any complex retiming at gate level G A 2 2 N/A

Comment: No evidence suggesting that
Hence the Assessment for this guidelinAlisays

R11.6.2.5
Table 95: R 11.6.2.5
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
11.6.2.5 Avoid combinational loop R A 2 2 N/A

Comment: No combinational feedbacks found in RTL
Hence the Assessment for this guidelinAlisays

11.6.3: Gate level Simulation:

R11.6.3.1
Table 96: R 11.6.3.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
11.6.3.1 The test bench provided with RTL worksR A 10 10 N/A
on gate level netlist

Commentahb_external_memory.v :tis the testbench file, which is used in both RTL and Gate
level Simulations.
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 60

IPBA : VC Evaluation Assignment

G11.6.3.2
Table 97: G 11.6.3.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.6.2.2 The gate level simulation works with ands N/A 2 N/A
without SDF

Comment: No sdf provided.
Hence the Assessment for this guidelinBlag Applicable

G11.6.3.3
Table 98: G 11.6.3.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.6.2.3 If macro has memory elements, all mems N/A 2 N/A

ory elements are reset during reset phase.
If not, it is documented and the X prop3g
gation is controlled in test plan.

Comment: The IP is targeted on FPGA, which provide a reset for registers automatically. So this
guideline is not applicable here

Hence the Assessment for this guidelinBlag Applicable
RMM2 11.7 Specialized Hardvare for System \érification
11.7.2 RTL Acceleration

G11.7.2.1
Table 99: G 11.7.2.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.7.21 Avoid collection of small testbenches | G A 2 2 N/A
where the compilation time is larger than
the execution time

Comment: One testbench file used. No evidence of small testbenches found
Hence the Assessment for this guidelinAlisays

11.7.6 Design guidelines for accelerated verification

AVIRAL MITTAL ISLI 2005/2006 61

IPBA : VC Evaluation Assignment

G11.7.6.7
Table 100: G 11.7.6.7
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
11.7.6.7 Maintain hierarchical, modular design {oG A 2 2 N/A
help reduce routing between processors.
Comment: Design is found to be modular.
Hence the Assessment for this guidelinAlisays
AVIRAL MITTAL ISLI 2005/2006

62

IPBA : VC Evaluation Assignment

Section 2.3.4 Delierable Guidelines

RMM2 Section 9 RMM Deliverables

9.1 Soft Maco Deliverables
9.1.1 Poduct Files

R9.1.1.1.1
Table 101: R9.1.1.1.1

RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score

9.1.1.1.1 If Verilog, synthesizable Verilog RTL | R A 10 10 N/A
Source for the macro and its subblocks

Comment: Synthesis Verilog present.
Hence the Assessment for this guidelinAlisays
R9.1.1.1.2: VHDL guideline Not Applicable

R9.1.1.1.3
Table 102: R 9.1.1.1.3
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.1.1.3 Application Notes with VHDL and Ver{ R A 10 10 N/A
ilog Design Example.

Comment: Application Notes present: Documents ékeernal_memory_programmers_guide.pdf
provide them

Hence the Assessment for this guidelinAlisays

R9.1.1.1.4

Table 103: R9.1.1.1.4

RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score

9.1.1.14 Synthesis scripts & timing constraints R A 10 10 N/A

Comment: Synthesis scripts & timing constraints file presgmithesis.ptj
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006 63

IPBA : VC Evaluation Assignment

R9.1.1.1.5
Table 104: R 9.1.1.1.5
- Asses| Max .
RMM Sec Guideline Type Score | Script useq
sment| Score
9.1.1.15 Scripts for scan insertion and ATPG. R N/A 10 N/A

Comment: Design Target is FPGA. So these are not needed here.
Hence the Assessment for this guidelinBlas Applicable

R9.1.1.1.6
Table 105: R 9.1.1.1.6
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.1.16 Reference library. R N 10 0 N/A

Comment: Reference Library not given
Hence the Assessment for this guidelinBléver

R9.1.1.1.7
Table 106: R 9.1.1.1.7
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
9.1.1.1.7 Installation scripts. R N/A 10 N/A

Comment: No complex installation needed. All files present in one compressed file.
Hence the Assessment for this guidelinBlat Applicable

R9.1.1.2: \&rification Files

R9.1.1.2.1
Table 107: R9.1.1.2.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.1.21 Bus functional model/monitors used in| R A 10 10 N/A
testbench.

Comment: Monitors are used in the testbench, and also documented.
Hence the Assessment for this guidelinAlisays

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

R9.1.1.2.2
Table 108: R 9.1.1.2.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.1.2.2 Testbench files including representative R A 10 10 N/A
verification tests.

Comment: Testbench files present.
Hence the Assessment for this guidelinAlisays

R9.1.1.3: Documentation

R9.1.1.3.1
Table 109: R 9.1.1.3.1
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
9.1.1.3.1 User guide / Functional specification. R A 10 10 N/A

Comment: User Guideekternal_memory_programmers_guide’@ifd
‘Rapier_External_Memory_Controller.gdfresent
Hence the Assessment for this guidelinAlisays

R9.1.1.3.2
Table 110: R9.1.1.3.2
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.1.3.2 Datasheet. R N 10 0 N/A

Comment: No Data Sheet Given.
Hence the Assessment for this guidelinBléver

R9.1.1.4: System Integration Files

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

G9.1.14.1
Table 111: G 9.1.1.4.1
RMM Sec Guideline Type Asses| Max Score | Script useq
sment| Score
9.1.14.1 Cycle-based/emulation models as apprds N 2 0 N/A
priate for macro and/or its testbenches
and BFMs.

Comment: No Cycle based/Emulation models provided.
Hence the Assessment for this guidelinBléver

G9.1.1.3.2
Table 112: G 9.1.1.3.2
RMM Sec Guideline Type Asses| Max Score | Script used
sment| Score
9.1.1.3.2 If macro has significant software requiteG N/A 2 N/A

ments, such as microcontrollers and
microprocessors, then a list of system
integration tools (compilers, debuggers
real-time operating systems and softwafre
drivers) that support the macro is pro-
vided.

Comment: The design do not contain any software or software based function. Not Applicable
Hence the Assessment for this guidelinBlat Applicable

AVIRAL MITTAL ISLI 2005/2006 66

IPBA : VC Evaluation Assignment

Section 2.4 : Results on Soft IP E&luation and discussion:

Overall score of the soft IP evaluation was found to be 342/584, which is assessed as 67%, given
the weighted scores of different sections are different.

This score includes

#1.A score of 201/240 i.e 83% for RTL coding guidelinesvhich was the main criteria for the

IP assessment in this exercise. A detailed explanation and comment has already been given.
#2. A score of 0/56 for system level Issues : Rules and Tools: Most of the guidelines does not
apply for in this exercise. So this doesn’t mean that the IP has failed badly with respect to this
topic, but its just not enough info is given to be able to evaluate the IP again this topic

#3. A score of 0/108 for macro synthesis Guidelines: Again not much info has been given with the
IP to be able to evaluate the IP against this topic. The document said that the main target of the IP
was made to be FPGA instead of ASIC. So no dc_shell/ac_shell scripts were provided. Which
makes the evaluation of the IP against this topic as Not Applicable.

#4.A score of 61/68 i.e 90% for Verification guidelinesThis is a very good score. This tells

that the verificaiton of the IP has been done largely as per guidelines.

#5. A score of 80/112 ie 62% on Deliverable Guidelinegvhich is a reasonably good score.

Conclusion: Leaving the points #2 and #3 because they are mostly Not Applicable, the IP con-
forms to the Openmore Guidelines to a high degree.

AVIRAL MITTAL ISLI 2005/2006 67

IPBA : VC Evaluation Assignment

Section 3 : IP Hardening Pocess: HL to GDSII
3.1 Introduction to IP_Hardening Process and Hard IP Ealuation
This section gives details of how the IP was hardened and evaluated. Since the IP given is a soft-
IP and it is to be hardened locally, many of the guidelines in Hard IP evaluations does not apply.
The Hardening Process:

3.2 Steps
A soft IP given to us as RTL can be converted into final layout using the following flow chart.

The Left hand box shows the inputs of the step, the ellipse in middle shows the step and the box
on right hand side shows the result of that step.

RTL,

Library Tech file
Constraints i.e area
Timing etc

1. Synthesis Netlist

Constraints,

Netlist, RSPF(from
Step 8)

Report contaning
Timing faliures

2. Static Timing Analysis

Netlist, LEF(Library),

Library Verilog Models
ctlf, gcf

Layout with
3. Floor plan and Power plan Floorplan and powet
Plan

AVIRAL MITTAL ISLI 2005/2006 68

IPBA : VC Evaluation Assignment

Floorplan

4. Placement of cells(Qplace Placed Layout

Placed Layout

5. Clock Tree Generation(Ct

D

Layout with clocktre

Layout with clocktree

Routed Layout

6. Routing(Connecting cells)
Post Routing

Routed Layout

Verified Layout

7. Verification, DRC, LVS

Verified Layout

GDSII ready

8. Write RSPf, SDF, DEF

Feedback RSPF in Static timing analysis(i.e step 2 in this chart) and sdf in simulation

AVIRAL MITTAL ISLI 2005/2006 69

IPBA : VC Evaluation Assignment

It is to be noted that this is a simplified flowchart giving only main steps in the layout generation.
The IP was hardened using the steps shown above. The tool used for steps 3 to steps 8 is
Cadence’s Silicon Ensemble.

Step wise discussion of the fle Starting fr om step 3 ending at step 8.

Step 3. Floor Plan and Bwer Plan:

This steps creates the floor plan of the design. This step needs the following as inputs

1). The verilog netlist files: The netlist which is to be hardened

2). The verilog library files: The netlist contains just the name of the cells and their connections,
however more information about each cell is required, which is present in library verilog file, con-
taining detailed model of each cell in the library, to which the design has been mapped.

3). The library LEF file: LEF stands for Library Exchange format. It is a text representation of the
Abstract views, which are derived from the layouts of cells. It contains the information about the
position of pins, the pin definition for each cell in design, pin capacitance, blockages. Blockages
in a cell is a restricted area to which router is not allowed to route.

The purpose of this step is to create a black box of the design, which will define the Aspect Ratio,
the area of the chip, the number of ‘rows’ in which the cells will be placed. Row utilization is also
defined in this step.

It is a very difficult step to decide the area and row utilization. Because there are chances that later
in steps, the area can be found to be inadequate, or it can be a lot more than needed. Usually an
iterative process is followed to decide the proper area and row utilization. Experience from previ-
ous design also helps in this step a lot.

The core area is defined in this step.

The distance of the ‘rows’ in which cell will be placed from the IPs is defined in this step.
Results of the step:

Putting 1/0O to core distance of 30u and Row Utilization to 80% , and Aspect ratio to 1.0 following
were the results.

Number of cells = 1308

Number of blocks = 0

Number of I/O pads = 0

Number of I/O Pins = 266

Number of Cornet Pads = 0

Number of Nets = 1619

Width of chip = 507.267u

Height of chip = 507.267u

Number of standard cell rows = 37

Area of Cells(sg microns) 160038.000

Chip Area = 257319.809 sq microns

Row Utilization was then changed to 90%

Following were the results of changing row utilization to 90%
Number of cells = 1308(same)

Number of blocks = O(same)

Number of I/O pads = 0(same)

AVIRAL MITTAL ISLI 2005/2006 70

IPBA : VC Evaluation Assignment

Number of I/O Pins = 266(same)

Number of Cornet Pads = O(same)

Number of Nets = 1619(same)

Width of chip = 481.687u(different)

Height of chip = 481.687u(different)

Number of standard cell rows = 35(different)
Area of Cells(sg microns) 160038.000(same)
Chip Area = 232022.366 sq microns

Comment on affect of changing row utilization.

Increasing row utilization will place more cells in one row, so the number of rows will reduce.
This will also reduce the chip area. But it will make the routing more difficult because there will
be less space between the cells for routing metal to pass. So if the row utilization is increased very
much, the chip will more likely produce problems in physical verification i.e DRC and LVS, but
on the other hand keeping it very low will be a waste of area. So a trade-off must be made and
using some iterative processes, row utilization should be set to a reasonable value.

I/0O pins in the design are also placed in this step along the periphery of the chip. Usually the
placement of the I/O is defined using a separate file, which defines where exactly an 1/0 will be
placed. But for the purpose of this exercise, the I/Os were placed randomly.

This step also involves the definition of power stripes. To supply power to each and every row, a
power grid is usually made, which thicker metal. It is very important to maintain the VDD levels
throughout the chip, so that the delays are consistent, and the noise margins are as expected. To
distribute power uniformly across the chip, a grid of power stripes is made, which connects to the
‘rows’ of cells in later stages.

The tool allows us to define the width of the metal used for power ring. Which was selected to 5
microns for metal 1 and metal 2 both.

Power stripes were then made, and the width(5u), Spacing(2u) of the power stripes and number
of power stripes(3 sets) were also defined. The offset, i.e the distance from the power ring was
also defined to be 100u form left as well as from right.

This step thus created a gird of power distribution for the whole chip, which helps in uniform dis-
tribution of power i.e VDD and GND thought the design. For power stripes M2 i.e metal2 was
chosen.

At the end of this step we get a layout which has cell rows defined and power stripes made.
Please see the attached Figures 1,2,3 which shows the area, number of I/Os, cells, cornerpads,
pins etc for row utilization value of 80%, 90%, and 85%. Figure 4 shows the the layout with rows
which have been created. Figure 5 shows the Power Stripes and power rings as well.

Step 4. Placement of cells

The rows created in the layout is the place where the cells in the netlist will be placed. The place-
ment of cells in DSM flow is extremely important as this affects the timing of the design to a large
extent in DSM methodology. There are various algorithms to place the cells such as Manhattan
algorithm. All these algorithm helps in placing the cells in the rows created in Step3 to minimise
the interconnect wire length. They help in placing those cells together which are more related to
each other.

AVIRAL MITTAL ISLI 2005/2006 71

IPBA : VC Evaluation Assignment

In ASIC design methodology the placement was not as critical as in DSM flow. The new tools
perform what is called ‘Timing Driven Placement’, for the placement of cells in rows to minimise
the critical path delay. Since the timing are also being considered in this step, the tool requires the
timing information of each cell in the library as well. This is usually supplied as ‘ctlf’ file i.e
‘compiled timing library format’. Unlike the ASIC design flow, in DSM design flow, the layout
tools have the power to change the netlist logically, using more appropriate cells as required. For
example, the layout tool may change the drive strength of the cells as required.

Once the placement is done, usually in DSM flow, a more accurate ‘wire load models’ are gener-
ated, and the information is fed back into step 2) i.e static timing analysis. STA is then performed
to see if the generated placement of cells is more likely to meet the timing requirements.

The placement of cells can also be ‘flipped’ in each row, so that the power pins/lines of cells in a
row can be abutted with the power lines in the adjacent row.

Cells in the netlist were placed in the rows created in step3 above.
Figure 6 clearly shows the placed cells in the layout.

Step 5. Clock Tee Generation(CTgen)

Clock tree is an important part of the design. Clock is one single net which has to go to almost
every place in the layout. Also the clock should be laid out in such a manner so that the skew in
the clcok is within acceptable limits. This net usually has very large capacitive load because there
can be thousands of flip-flops connected to a single clock net.

So there is a need for proper buffers in clock path, which will make sure that the clock net doesn't
loose strength, and also it will put equal timing delay from the clock pin on the boundary of chip
to each flip-flop in the design, so that ‘skew’ is controlled.

This step then modifies the existing the clock tree, and optimize it according to the placement
done in Step 4 above. In the practical exercise, this step failed given an unknown error.

Step 6. Routing(Connecting cells)+ &t Routing

The cells placed in steps above now needs to be connected together by physical wires. The con-
nections are defined in the netlist file. To avoid shorts, several metal layers can be used to perform
routing. Also the layers have defined directions. For example a given layer will have a defined
direction i.e weather it runs horizontally or vertically.

If M1 is Left to Right or vice-versa, M2 will be top to bottom or vice versa, M3 will be Leftto
Right or vice-versa, M4 will be top to bottom or vice versa and so on. This is a valid scheme of
metal routing direction, and very much used in practice.

All these metals ie M1 M2 M3 M4 are assigned different horizontal planes. ‘Vias’ are used to
make connections between two metals on different horizontal planes.

Not only the cells are connected together in this step, the power rails are also connected to supply
power to the full chip.

The first step was to connect the power rings, rails and power signals to pad/blocks. For this ‘con-
nect ring’ command was used. Global routing was then done to make the connections between the
cells.

In this exercise 5 Metal layers were used to make connections i.e M1, M2, M3, M4, M5

Fig 7 shows a clear picture of connected cells. Fig 8 shows a zoomed area from Fig 7 which shows
the metal routing in a more elaborate way

AVIRAL MITTAL ISLI 2005/2006 72

IPBA : VC Evaluation Assignment

Step 7. Plysical \erification DRC and LVS:

This step verifies the layout created in step 6 above. Design Rule Check is run, to see if all the
design rules are followed. A layout versus schematic check is also performed to see that the layout
generated corresponds to the input netlist. This step however was not performed as it was not a
part of the exercise

Step 8: Write RSPE SDE DEF:

Parasitic extraction is performed, and put in a industry standard format i.e RSPF(Reduced Stand-
ard Parasitic Format), which is then fed back into step 2 i.e Static Timing Analysis. It is very
important that STA passes with this parasitic information. SDF is also written which is a delay
file(Synopsys Delay Format or Standard Delay Format) which is used by post netlist gate level
simulations. The final design is then written out as a DEF(Design Exchange Format).

Answers to asked questions:

1). How many cells, blocks, 10 pads, 10 pins, Corner Pads and nets are contained in design
Answer :

No of I/O cells = 1308

No of blocks =0

No of /0 pads =0

No of I/O pins = 266

No of Corner Pads = 0

No of nets = 1619

2). What is the area of the design

Area of chip = 234170.824 square microns, area of cells = 160038.000 square microns

3). How many layers are there in the design

Answer : 5

4). How many stripes were added to the design

Answer : 3

5). How many Stripe connections to core rings are there in the design

Answer 6. £ each for VDD and GND

6). Define block ring width

Answer: The width of the power ring is being referred to: It is defined to be 5 microns for both
metall and metal2

7). If you need to add new stripes to a design, do you need to completely reset the floorplan
Answer No: New stripes will be added, and ‘Delete All Existing Stripes’ button can be switched
ON while doing that. So there is no need to reset the floorplan

8).If so why

Answer: No the floor plan doesn’t needs a reset. See explanation in answer to question 7
9) How is the aspect ratio calculated.

Answer: Aspect ratio is the ratio of Height/Width of the design. It is not calculated, itis given as a
input field.

10). What is the desired value of aspect ratio

Answer : 1.

11). What is the die size of the design

Answer : Die size = chip area = 234170.824

AVIRAL MITTAL ISLI 2005/2006 73

IPBA : VC Evaluation Assignment

12). Name the power wires in the design:

Answer : vdd! and gnd!

13). Name the metal layers used for routing the power and ground wires

Answer: metall and metal2

14). Explain the role of power rings, power stripes and power rails on the chip.

Answer: This is done to distribute power uniformly throughout the chip. The value of VDD

should remain constant throughout the chip as noise margins, and delays depend upon this value.
So there must not be any drop in VDD in the chip. To maintain VDD a power grid is made using
rings, stripes, and rails.

15) Which one of the wires in 14 can easily left out without causing problems on the routed chip.
Answer: Not sure, guess, stripes can be left out, so that the horizontal rails supply power to each
cell in the design

16). What are regular wires

Answer: The wires used to make connections from cell to cell

17). Distinguish between regular wires and special wires

Answer: Special wires are VDD and GND ,which has special arrangements. Regular wires are
ordinary wires running form cell to cell.

18). How many metal layers...

Answer: 5 layers

19) What are vias:

Answer: Vias are the connections in vertical plane on a chip, used to make connections between 2
metal layers in different horizontal planes. For example M1 and M2 can only be connected using
vias.

20). Why are they needed for routing on a chip.

Answer: On a chip several routing metal layers are employed in different horizontal planes. Vias
are used to make connections between different layers in different horizontal planes.

21). What information can you obtain from the report RC file:

Answer: An RC files gives more accurate values of parasitic capacitance and resistance after a
layout has been completed. Since the layout has been done, accurate lengths of metals are now
defined. So the related parasitic resistance and capacitance can now be calculated. This info is
stored in the RC file.

22).What is the difference between the stripes added in tutorial and in this exercise

Answer: Only difference is in the width of rings. which is 5 microns in this exercise and
10microns in the tutorials. Width and spacing of stripes is 5 and 2 microns repsectively in both
tutorial and in this exercise.

AVIRAL MITTAL ISLI 2005/2006 74

IPBA : VC Evaluation Assignment

Section 3.3: Results: HARD IP Generation.

The soft ip was converted into hard ip successfully. However it is to be noted that, CTgen failed
and clock tree optimization therefore was not done. Also DRC/LVS was not done as it was not a
part of this exercise, but it is a very important step in physical design.

The HARD IP assessment was also done using OpenMORE. The result was that the IP scored
103/504. That is the results of assessment was not found to be satisfactory. As this is just an exer-
cise and not a real design, most of the steps in OpenMORE had not been taken into account. For
example, first of all no hard ip specs were present, so no area or power goals. LVS/DRC is not a
part of this exercise, but OpneMORE has significant score related to them.

But the important part is that the exercise gave an insight about how RTL to GDSII flow is done in
industry, and what are the main steps/tools/requirements/results in the flow

AVIRAL MITTAL ISLI 2005/2006 75

IPBA : VC Evaluation Assignment

Section 4: Common or total Results andesults discussion

The total result of the IP changed significantly after evaluation of HARD IP. Soft IP scored very
good result of around 80%(when evaluated against the main criteria i.e RTL coding guidelines),
where as the result of HARD IP was not found up to a level of satisfaction. It produced a score of
29% only. The reason is simple, the IP given is given as a soft ip, and all the related documenta-
tion, specs, code, scripts refer to the soft ip only. Hard IP was generated locally and there was no
information related to generation of hard ip. Also the soft ip was mainly targeted on FPGA so it
made more difficult to hardened in. So the poor result in evaluation of HARD IP is quite obvious.

AVIRAL MITTAL ISLI 2005/2006 76

IPBA : VC Evaluation Assignment

Section 5 :Comment on the OpenMaz ervironment.

OpenMORE environment was found very useful in evaluating the IP. Following OpenMORE can
give a very high degree of re-use, understad ability of code, quality of code, good synthesis prac-
tices for the code. It can quickly give an overall assessment on the quality of RTL code. The
guidelines in OpenMORE also avoids common mistakes which a designer can do: such as simula-
tion and synthesis mismatches, un-intentional inference of latches, unstability due to asynchro-
nous feedbacks in the design.

It not only provides good practices for RTL, but also for Verification, System Design issues, and
Physical Design.

Main Advantages of OpenMORE:

1). Gives high degree of re-use

2). Helps in avoiding common mistakes in RTL

3). Gives a way to code which is quickly understandable.

4). Gives marketability to the IP

6). Gives a very good industry standard common checklist, so that its difficult to forget things.
7). Gives a good way to implement verification plan

However there are some disadvantages too

1). OpneMORE is very exhaustive.

2). It can be very time consuming to follow each and every guideline

3). Following each and every guideline is not always possible.

4). Some guidelines may require unnecessary change in the design, giving not as much advantage.

Addition to OpenMORE.

In Section 5.3.7 ie. Coding For Translation (VHDL to Verilog), following guideline is recom-
mended to be added:

IF VHDL, no use of attributes like ‘HIGH, ‘LOW, ‘LENGTH.

These attributes are used commonly by VHDL designers to write functions in vhdl, which are
synthesizeable. And there is no replacement of these attributes in verilog.

AVIRAL MITTAL ISLI 2005/2006 77

IPBA : VC Evaluation Assignment

Section 6 APPENDIX:
B: Figures from Hard IP generation Process:

AVIRAL MITTAL ISLI 2005/2006

78

IPBA : VC Evaluation Assignment

C : Scripts used br some guidelines

blocking.pl

#!/usr/bin/perl

HHAHH IR R R R R R R R R R R R R
wH

To extract WARNINGS/VIOLATIONS in RTL for R5.5.6.1 of Openmore

Always use non blocking assignemnts in always blocks

Assumptions:

1). There are no 'assign’ statements inside an always statements

HH AR R R R R R R R R R R R
wH

if(@ARGV[0] eq ™) {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

$begin = 0;
$always = 0;
$edge = 0;
$mystr = ";
$start_cat = 0;

open(out,">@ARGVI[0].R5_5 6_1") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if(($linel =~ A*/) && ($ignore == 0)) {
$ignore = 1;
}
if(($ignore == 1) && ($linel =~ \¥)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;
}
chomp($linel);
@lines = split(#/, $linel);
$no_of _ele = $#lines;
$oneline = $lines[0];
$oneline =~ s/(\s+)//q;
if(($oneline =~ /edge/)&&($edge == 0)&&($oneline =~ /always/)) {
$start_cat = 1;
$edge = 1;

AVIRAL MITTAL ISLI 2005/2006 79

IPBA : VC Evaluation Assignment

}
elsif(($oneline =~ /(assign|always|endmodule)/) && ($edge == 1)) {
$start_cat = 0;
$edge = 0;
}
if($start_cat == 1) {
$oneline =~ s/<=/##/g;
$oneline =~ s/==/##/g;
if($oneline =~ /for«/) { #filter out statements with for loops
next;
}
if($oneline =~ /=/) {
print out "VIOL:R5.5.6.1: blocking assignment found in always @ (anyedge) block\n";
print out "$nn: $linel\n\n";
}
}
if(($oneline =~ /edge/)&&($edge == 0)&&($oneline =~ /always/)) {
$start_cat = 1;
$edge = 1;
}
} #while ($linel = <infile0>)

#The logic: if any always begins with 'edge’ ie. posedge or negedge in it
#try to find a =" till you get to enter another always or till you see

#a assign or till you see a endmodule.

#Since it was not possible to find out when an always block ends, the above
#stpes were taken thinking, that

#1). If another alwyas is fouund, the prev one must have ended

#2). If an assign is found, the prev always must have ended

#3). If an endmodule is found, the prev always must have ended

file: unig.pl

AVIRAL MITTAL ISLI 2005/2006 80

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for R5.2.15.5 of Openmore

To find duplicate signals/veriables in two RTL files

B R R R R R R R R R R R R R R
#tH

if(@ARGV[0] eq ™) {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

$cat = 0;
$ii=0;
open(out,">file.R5 2 7 1") || die "Couldn’t open file.R5 2 7 1\n";
foreach $file (@ARGV) {
print "$file\n";
open(infile0,"<%file") || die "Couldn’t open infile0. $file\n *;
while ($linel = <infile0>) {
if(($linel =~ N*)) {
$ignore = 1;
}
if(($ignore == 1) && ($linel =~ \¥)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;

}

chomp($linel);

@lines = split(#/, $linel);

$oneline =" $lines[0]";

if((Poneline =~ A\s+module\s+|\s+reg\s+|\s+wire\s+/)) {
$cat = 1;

}

if(($oneline =~ /(;|<))&&($cat==1)) {
$cat = 0;
$myline = $myline.$oneline;
#print "$myline\n";
if($myline =~ /(module)\s+(\w+)/) {

$fline = $2;
}
else {
$fline = $myline;

AVIRAL MITTAL ISLI 2005/2006 81

IPBA : VC Evaluation Assignment

}

$myline =",
$fline =~ s/;/lg;
$fline =~ s/,/ /g;

$fline =~ sN\[.X\]//g;

$fline =~ s/(\s+module\s+|\s+wire\s+|\s+reg\s+)//g;

@plist = split(\s+/, $fline);

#print "f=$fline\n";

if($ii==0) {
push(@parray_vecO, @plist);
#@parray_vecO = @parray;,

}

elsif($ii==1) {
push(@parray_vecl, @plist);
#@parray_vecl = @parray;,

}

@plist =™,
}
if($cat ==1) {

$myline = $myline.$onelineg;
}

} #while ($linel = <infile0>)
close(infile0);
#print "closing file\n";

$ii++;

foreach $signal0 (@parray_vecO) {
foreach $signall (@parray_vecl) {
if($signal0 eq $signall) {
print out "VIOL:R5.2.15.5 Duplicate signal/module/variable '$signal0’ in $ARGV[0] and
$SARGV[1]\n";
Sjj++;
}
}
}

print out "Total Number of Duplicate signals/variables/modules = $jj\n";

file: ucase.pl

AVIRAL MITTAL ISLI 2005/2006 82

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.3 of Openmore

To find a lower case letter in constant definition

Only 'define statements are checked here

FHHHHHH R R R R
wH

#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq ") {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGV[0].G_5 2 1 3") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if($linel =~ /module/) {
$ignore = 1;
}
if($linel =~ /;/) && ($ignore == 1)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;
}
chomp($linel);
@lines = split(#/, $linel);
$no_of _ele = $#lines;
$lines[0] =" "."$lines[0]";
if($lines[0] =~ /(‘define\s+(.*)\s+)/) {
if($2 =~ /[a-z]/) {
print out "VIOL:G.5.2.1.3 Lowercase letter found in Constant Name \n";
print out "$nn: $lines[0]\n";

}

}
} #while ($linel = <infile0>)

file: sepline.pl

AVIRAL MITTAL ISLI 2005/2006 83

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for R5.2.6.1 of Openmore

To extract multiple statements in one line

Checked for 2 semicolons in one line

FHHHHHH R R R R
wH

if(@ARGVI[0] eq ™) {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGVI[0].R5_2 6_1") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0O]\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if(($linel =~ A*))) {

$ignore = 1;

}

if(($ignore == 1) && ($linel =~ \¥))) {
$ignore = 0;

}

$nn++;

if($ignore == 1) {
next;

}
chomp($linel);

@lines = split(#/, $linel);
$no_of ele = $#lines;
$oneline = $lines[0];
$oneline =~ s/(\s+)//g;

if($oneline =~ /;(.*);/) {
print out "VIOL:R5.2.6.1: Two or more statements in one line found\n";
print out "$nn: $linel\n\n";

}
} #while ($linel = <infile0>)

file Icase.pl

AVIRAL MITTAL ISLI 2005/2006 84

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.2 of Openmore

To find Uppercase letters in signals,variables,port Names

Iltems checked : input,output,inout,reg,wire,integer

FHHHHHH R R R R
wH

#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq ") {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGVI[0].G_5 2 1 2") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if($linel =~ /module/) {
$ignore = 1;
}
if($linel =~ /;/) && ($ignore == 1)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;
}
chomp($linel);
@lines = split(#/, $linel);
$no_of _ele = $#lines;
$lines[0] =" "."$lines[0]";
if($lines[0] =~ /(\s+input\s+|\s+output\s+|\s+inout\s+|\s+reg\s+|\s+wire\s+|\s+integer\s+)/) {
if($lines[0] =~ /[A-Z]/) {
print out "VIOL:G.5.2.1.2 Uppercase letter found in signal/variable/port Name \n";
print out "$nn: $lines[0]\n";

}

}
} #while ($linel = <infile0>)

file: hardcode.pl

AVIRAL MITTAL ISLI 2005/2006 85

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for G11.2.10.2 of Openmore

B AR R R R R R A R R R AR R R R A R R R R e R AR R R R e
#HH

if(@ARGV[0] eq ") {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGVI[0].G5_3 2 1") || die "Couldn’t open mapfile for @ARGV[0O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if(($linel =~ A*¥)) {

$ignore = 1;
}
if(($ignore == 1) && ($linel =~ \¥)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;
}

chomp($linel);
@lines = split(#/, $linel);
$no_of_ele = $#lines;
$oneline = $lines|0];
$oneline =~ s/(\s+)//g;
if($oneline =~ /(parameter|define|)/) { #to aviod stuff like if('DATA_SIZE = 100)
#because this is realy not hardcoding
next;
}
#if($oneline =~ /(parameter|define)/) {
next;
#}
if($oneline =~ /(\[(T+):(TH)]/) {
print out "VIOL:G5.3.2.1: hardcoding found typel\n";
print out "$nn: $line1\n\n";
next;
}
if($oneline =~ /((t+)'(blh|d))/) {
if(1($2==1)) {

AVIRAL MITTAL ISLI 2005/2006 86

IPBA : VC Evaluation Assignment

print out "VIOL:G5.3.2.1: hardcoding found type2\n";
print out "$nn: $linel\n\n";
next;
}
}
if($oneline =~ /(' (blh|d)(t+))/) {
if(1(($3==0)||($3==1))) {
print out "VIOL:G5.3.2.1: hardcoding found type3\n";
print out "$nn: $linel\n\n";
next;
}
}
if($oneline =~ /(' (h)([A-Fa-f]))/) {
print out "VIOL:G5.3.2.1: hardcoding found type4\n";
print out "$nn: $line1\n\n";
next;
}
if(($oneline =~ /(=(T+))/)&&(!($oneline =~ /(for|while)/))) {
if(1(($2==0)||($2==1))) {
print out "VIOL:G5.3.2.1: hardcoding found type5\n";
print out "$nn: $line1\n\n";
next;
}
}
if($oneline =~ /((T+){)/) {
print out "VIOL:G5.3.2.1: hardcoding found type6\n";
print out "$nn: $linel\n\n";
next;

}
} #while ($linel = <infile0>)

file: downto.pl

AVIRAL MITTAL ISLI 2005/2006

87

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
To extract WARNINGS/VIOLATIONS in RTL for R5.2.1.11 of Openmore

To extract [0:x] type structurs in RTL

ONLY ports are checked. regs, wires etc are NOT checked

Bceause RMM spread sheet refers to ports ONLY

FHHHHHH R R R R

if(@ARGV[0] eq ™) {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGVI[0].R5_2_1 11") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O]\n *;
#system("awk '/module/,/endmodule/ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if(($linel =~ A*¥)) {

$ignore = 1;

}

if(($ignore == 1) && ($linel =~ \¥)) {
$ignore = 0;

}

$nn++;

if($ignore == 1) {
next;

}
chomp($linel);

@lines = split(#/, $linel);
$no_of _ele = $#lines;
$oneline = $lines[0];
$oneline =~ s/(\s+)//g;

if($oneline =~ /input|output|inout/) {

if($oneline =~ /(\[(0):(TH)])/) {
print out "VIOL:R5.2.1.11: [0:x] found typel\n";
print out "$nn: $linel\n\n";

}

if($oneline =~ /(\[(0):(\w+)])/) {
print out "VIOL:R5.2.1.11: [0:x] found type2\n";
print out "$nn: $line1\n\n";

}

}
} #while ($linel = <infile0>)
file: clkname.pl

AVIRAL MITTAL ISLI 2005/2006 88

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
HH#

To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.6 of Openmore

To find that a clock singal name is 'clk’ or prefixed with 'clk’

all the signals which are which follow 'posedge’ are considered to be clock

signas

Assumption: there are no Async Resets in the design

HHAHHAH AR R AR R R R R R R R
H#Hi#

#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq ™) {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

$clkname = "#H#HH#";
open(out,">@ARGV[0].G_5 2 1 6") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if($linel =~ /module/) {
$ignore = 1;
}
if($linel =~ /;/) && ($ignore == 1)) {
$ignore = 0;
}
$nn++;
if($ignore == 1) {
next;
}
chomp($linel);
@lines = split(#/, $linel);
$no_of _ele = $#lines;
$origline = $lines|0];
$lines[0] =" "."$lines[0]";
$lines[0] =~ s/>/ /g ;
if($lines[0] =~ /(posedge\s+(\w+)\s+)/) {
$clk = $2;
if(!($clk =~ /"N(clk))) {
if($clk eq $clkname) {
}
else {
$clkname = $clk;

AVIRAL MITTAL ISLI 2005/2006 89

IPBA : VC Evaluation Assignment

print out "VIOL:G.5.2.1.6 clk like signal not prefixed with "clk’\n";
print out "$nn: $origline\n";

}

}

}
} #while ($linel = <infile0>)

filename: chars132.pl

AVIRAL MITTAL ISLI 2005/2006

90

IPBA : VC Evaluation Assignment

#!/usr/bin/perl

AR AR R R R S R R A R R R AR R R A R A R R e R AR R R e R e
#HH

To extract WARNINGS/VIOLATIONS in RTL for R5.2.7.1 of Openmore

To check if the no of chars in each lines are less than or equal to 132

Split the line using 'no’ delimeter, and then have the no of elements in

resulting array.

B AR R R R R R A R R R R R R A A R R R e R AR R R R e
#HH

if(@ARGV[0] eq ") {
print "ERROR: insufficient fields\n";
print "Usage:unix> stuff.pl <input_file> \n";
exit;

}

open(out,">@ARGVI[0].R5_2 7 1") || die "Couldn’t open mapfile for @ARGV[O]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[O\n ";
#system("awk '/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
while ($linel = <infile0>) {
if(($linel =~ A*¥)) {

$ignore = 1;

}

if(($ignore == 1) && ($linel =~ \¥))) {
$ignore = 0;

}

$nn++;

if($ignore == 1) {
next;

}
chomp($linel);

@lines = split(//, $linel);

$no_of _ele = $#lines;

if($no_of_ele>132) {
print out "VIOL:R5.2.7.1: $no_of_ele chars in a line found.Which are grater than 132\n";
print out "$nn: $line1\n\n";

}
} #while ($linel = <infile0>)

AVIRAL MITTAL ISLI 2005/2006 91

IPBA : VC Evaluation Assignment

D Log file generated by scripts ealuating IP

filename: ahb_external_memory_registers.v_rtl.G5 3 2 1
VIOL:G5.3.2.1: hardcoding found typel

137: input [1:0] htrans;

VIOL:G5.3.2.1: hardcoding found typel
138: input [2:0] hsize;

VIOL:G5.3.2.1: hardcoding found typel
140: input [31:0] haddr; /I AHB address bus bits.

VIOL:G5.3.2.1: hardcoding found typel
141: input [31:0] hwdata;

VIOL:G5.3.2.1: hardcoding found typel
150: output [1:0] hresp; /I AHB response. This module only provides.

VIOL:G5.3.2.1: hardcoding found typel
151: reg[1:0] hresp; /I two types of response:

VIOL:G5.3.2.1: hardcoding found typel
157: output [31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found typel
158: reg[31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found typel
168: output [3:0] enable; /I Active high level outputs. These are used

VIOL:G5.3.2.1: hardcoding found typel
171: output [3:0] read_only; // Active high level outputs. These are used

VIOL:G5.3.2.1: hardcoding found typel
177: output [3:0] read_wait_stateO;

VIOL:G5.3.2.1: hardcoding found typel
178: output [3:0] read_wait_statel;

VIOL:G5.3.2.1: hardcoding found typel
179: output [3:0] read_wait_state2;

VIOL:G5.3.2.1: hardcoding found typel
180: output [3:0] read_wait_state3;

VIOL:G5.3.2.1: hardcoding found typel
184: output [3:0] write_wait_stateO;

AVIRAL MITTAL ISLI 2005/2006

92

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1: hardcoding found typel
185: output [3:0] write_wait_statel;

VIOL:G5.3.2.1: hardcoding found typel
186: output [3:0] write_wait_state2;

VIOL:G5.3.2.1: hardcoding found typel
187: output [3:0] write_wait_state3;

VIOL:G5.3.2.1: hardcoding found typel
193: reg[2:0] slave_state;

VIOL:G5.3.2.1: hardcoding found typel
197: reg[3:0] reg_addr,

VIOL:G5.3.2.1: hardcoding found typel
209: reg [9:0] memO_control_reg,

VIOL:G5.3.2.1: hardcoding found typel
215: reg [9:0] mem_control_reg [3:0];

VIOL:G5.3.2.1: hardcoding found typel
248: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found type2
251: reg_addr <= 4’b0000;

VIOL:G5.3.2.1: hardcoding found typel
277: hresp[1:0] <= 2'b01;

VIOL:G5.3.2.1: hardcoding found typel
283: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel

285: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
291: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel

293: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
308: hresp[1:0] <= 2'b01;

AVIRAL MITTAL ISLI 2005/2006

93

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1: hardcoding found typel
338: hresp[1:0] <= 2'b01;

VIOL:G5.3.2.1: hardcoding found typel
344:. hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
346: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
352: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
354 reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
359: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
413: hresp[1:0] <= 2'b01;

VIOL:G5.3.2.1: hardcoding found typel
420: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
422: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
428: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
431 reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
449: hresp[1:0] <= 2'b00;

VIOL:G5.3.2.1: hardcoding found typel
545: hrdata[31:0] <= 32'b0;

VIOL:G5.3.2.1: hardcoding found typel
555: 4’1000 : hrdata[31:0] <= {22'b0, memO_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found typel
556: 4’b0100 : hrdata[31:0] <= {22'b0, mem1_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found typel

AVIRAL MITTAL ISLI 2005/2006

IPBA : VC Evaluation Assignment

557: 4’b0010 : hrdata[31:0] <= {22'b0, mem2_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found typel
558: 4’b0001 : hrdata[31:0] <= {22'b0, mem3_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found typel
561.: default : hrdata[31:0] <= 32’b0;

VIOL:G5.3.2.1: hardcoding found typel
631: memO_control_reg[9:0] <= {4’'b1111, 4'b1111, 2'b11};

VIOL:G5.3.2.1: hardcoding found typel
637: memO_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found typel
652: mem21_control_reg[9:0] <= {4'b1111, 4'b1111, 2'b00};

VIOL:G5.3.2.1: hardcoding found typel
658: mem1_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found typel
672: mem2_control_reg[9:0] <= {4'b1111, 4'b1111, 2'b00};

VIOL:G5.3.2.1: hardcoding found typel
678: mem2_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found typel
692: mem3_control_reg[9:0] <={4'b1111, 4'b1111, 2'b00};

VIOL:G5.3.2.1: hardcoding found typel
698: mem3_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found typel
727. assign read_wait_stateO = memO_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found typel
728: assign read_wait_statel = mem2l_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found typel
729: assign read_wait_state2 = mem2_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found typel
730: assign read_wait_state3 = mem3_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found typel
731: assign write_wait_stateO = mem0Q_control_reg[9:6];

AVIRAL MITTAL ISLI 2005/2006

95

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1: hardcoding found typel
732: assign write_wait_statel = mem1_control_reg[9:6];

VIOL:G5.3.2.1: hardcoding found typel
733: assign write_wait_state2 = mem2_control_reg[9:6];

VIOL:G5.3.2.1: hardcoding found typel
734: assign write_wait_state3 = mema3_control_reg[9:6];

filename ahb_external_memory_control.v_rtl.G5 3 2 1
VIOL:G5.3.2.1: hardcoding found typel
189: input [3:0] hsel_mem; // Active high AHB memory bank select.

VIOL:G5.3.2.1: hardcoding found typel
196: input[1:0] htrans; // AHB transfer type indicator.

VIOL:G5.3.2.1: hardcoding found typel
202: input [2:0] hsize; /I AHB transfer size indicator.

VIOL:G5.3.2.1: hardcoding found typel
218: input [31:0] haddr; // AHB address bus.

VIOL:G5.3.2.1: hardcoding found typel
220: input [31:0] hwdata; // APB data inout for write cycles.

VIOL:G5.3.2.1: hardcoding found typel

229: output [1:0] hresp; // AHB response. This module only provides.

VIOL:G5.3.2.1: hardcoding found typel
230: reg[1:0] hresp; [/ two types of response:

VIOL:G5.3.2.1: hardcoding found typel
236: output [31:0] hrdata; // APB data output for read cycles.

VIOL:G5.3.2.1: hardcoding found typel
237: reg [31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found typel
248: input [3:0] enable; // Active high level inputs. These are used

VIOL:G5.3.2.1: hardcoding found typel
251: input [3:0] read_only; // Active high level inputs. These are used

AVIRAL MITTAL ISLI 2005/2006

96

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found typel
274: input [3:0] read_wait_stateO;

VIOL:G5.3.2.1: hardcoding found typel
275: input [3:0] read_wait_statel;

VIOL:G5.3.2.1: hardcoding found typel
276: input [3:0] read_ wait_state2;

VIOL:G5.3.2.1: hardcoding found typel
277: input [3:0] read_ wait_state3;

VIOL:G5.3.2.1: hardcoding found typel
278: input [3:0] write_wait_stateO;

VIOL:G5.3.2.1: hardcoding found typel
279: input [3:0] write_wait_statel;

VIOL:G5.3.2.1: hardcoding found typel
280: input [3:0] write_wait_state2;

VIOL:G5.3.2.1: hardcoding found typel
281: input [3:0] write_wait_state3;

VIOL:G5.3.2.1: hardcoding found typel
286: input [31:0] mem_datain_i; // Memory device read databus.

VIOL:G5.3.2.1: hardcoding found typel
288: input [3:0] mem_invertbits_i; // Memory device read invertbits.

VIOL:G5.3.2.1: hardcoding found typel
295: output [3:0] mem_chip_enable_n_o; // Active low chip enable signals for

VIOL:G5.3.2.1: hardcoding found typel
296: reg[3:0] mem_chip_enable_n_o; // external memory devices.

VIOL:G5.3.2.1: hardcoding found typel
304: output [3:0] mem_byte _enable_n_o; // Active low byte strobe signals for

VIOL:G5.3.2.1: hardcoding found typel
305: reg[3:0] mem_byte enable n_o; // external memory devices. These are

VIOL:G5.3.2.1: hardcoding found typel
311: output [31:0] mem_address_o; // Output address bus for external

VIOL:G5.3.2.1: hardcoding found typel

AVIRAL MITTAL ISLI 2005/2006 97

IPBA : VC Evaluation Assignment

312: reg[31:0] mem_address_o; /I memory devices.

VIOL:G5.3.2.1: hardcoding found typel
315: output [31:0] mem_dataout_o; // Output databus for external

VIOL:G5.3.2.1: hardcoding found typel
316: reg[31:0] mem_dataout_o; // memory devices.

VIOL:G5.3.2.1: hardcoding found typel
318: output [3:0] mem_invertbits_o; // Output databus for invert bits

VIOL:G5.3.2.1: hardcoding found typel
319: reg[3:0] mem_invertbits_o; // memory devices.

VIOL:G5.3.2.1: hardcoding found typel
321: output [3:0] mem_dataout_en_o; // Output enables

VIOL:G5.3.2.1: hardcoding found typel
322: reg [3:0] mem_dataout_en_o; // Output enables

VIOL:G5.3.2.1: hardcoding found typel
343: reg[3:0] wait_state cntr;

VIOL:G5.3.2.1: hardcoding found typel
349: reg[1:0] hresp_pr;

VIOL:G5.3.2.1: hardcoding found typel
350: reg[3:0] byte lane_enable;

VIOL:G5.3.2.1: hardcoding found typel
351: reg[3:0] byte lane_enable pr;

VIOL:G5.3.2.1: hardcoding found typel
355: reg[3:0] read_wait_state;

VIOL:G5.3.2.1: hardcoding found typel
356: reg[3:0] write_wait_state;

VIOL:G5.3.2.1: hardcoding found typel
357: reg[3:0] mem_chip_enable_n_pr;

VIOL:G5.3.2.1: hardcoding found typel
363: reg[3:0] hsel_mem_reg; // The captured values of hsel_mem

VIOL:G5.3.2.1: hardcoding found typel

AVIRAL MITTAL ISLI 2005/2006

98

IPBA : VC Evaluation Assignment

365: reg[32:0] haddr_gray_capture; // Gray format of haddr for checking byte enable in proto-
col checker

VIOL:G5.3.2.1: hardcoding found typel
368: reg [35:0] hwdata_businvert_capture; // Businvert coded format of hwdata

VIOL:G5.3.2.1: hardcoding found typel
375: reg[5:0] current_state, next_state;

VIOL:G5.3.2.1: hardcoding found typel
630: always @ (posedge hclk) hresp[1:0] <= #tm_prop hresp_pr[1:0];

VIOL:G5.3.2.1: hardcoding found type2
704: mem_chip_enable n_pr <=4'b1111; // Default value

VIOL:G5.3.2.1: hardcoding found typel
721 always @ (posedge hclk) mem_chip_enable_n_0[3:0] <= #tm_prop
mem_chip_enable_n_pr[3:0];

VIOL:G5.3.2.1: hardcoding found typel
807: hsel _mem_reg[3:0] <= #tm_prop 4'b0000;

VIOL:G5.3.2.1: hardcoding found type2
877: byte lane_enable pr = 4’b0000;

VIOL:G5.3.2.1: hardcoding found type5
898: 1'b0: byte_lane_enable_pr = 4'b0011;

VIOL:G5.3.2.1: hardcoding found type2
900: default: byte lane_enable pr = 4'b1100;

VIOL:G5.3.2.1: hardcoding found type5
906: 1'b0: byte_lane_enable _pr= 4’b1100;

VIOL:G5.3.2.1: hardcoding found type2
908: default: byte lane_enable_pr = 4'b0011;

VIOL:G5.3.2.1: hardcoding found typel
916: case (haddr_gray_capture[1:0])

VIOL:G5.3.2.1: hardcoding found type2
917: 2'b00: byte lane_enable pr = 4’'b0001;

VIOL:G5.3.2.1: hardcoding found type2
918: 2'b01: byte lane_enable pr = 4'b0010;

AVIRAL MITTAL ISLI 2005/2006 99

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1:
919:

VIOL:G5.3.2.1:
921:

VIOL:G5.3.2.1:
926:

VIOL:G5.3.2.1:
927:

VIOL:G5.3.2.1:
928:

VIOL:G5.3.2.1:
929:

VIOL:G5.3.2.1:
931:

VIOL:G5.3.2.1:
937:

VIOL:G5.3.2.1:
949:

VIOL:G5.3.2.1:
951:

VIOL:G5.3.2.1:
957:

VIOL:G5.3.2.1:
959:

VIOL:G5.3.2.1:
968:

VIOL:G5.3.2.1:
969:

VIOL:G5.3.2.1:
970:

VIOL:G5.3.2.1:

hardcoding found type2
2'bll: byte lane_enable_pr = 4’'b0100;

hardcoding found type2
default: byte lane_enable_pr = 4’'b1000;

hardcoding found typel
case (haddr_gray_capture[1:0])

hardcoding found type2
2’'b00: byte lane_enable_pr = 4’b1000;

hardcoding found type2
2'b01: byte lane_enable_pr = 4’b0100;

hardcoding found type2
2’bll: byte lane_enable_pr = 4’b0010;

hardcoding found type2
default: byte lane_enable_pr = 4’'b0001;

hardcoding found type2
byte lane_enable pr= 4'b1111;

hardcoding found type5
1'b0: byte _lane_enable_pr = 4’'b0011;

hardcoding found type2
default: byte lane_enable_pr = 4'b1100;

hardcoding found type5
1'b0: byte _lane_enable_pr = 4'b1100;

hardcoding found type2
default: byte lane_enable_pr = 4'b0011;

hardcoding found typel
case (haddr[1:0])

hardcoding found type2
2’'b00: byte lane_enable_pr = 4’'b0001;

hardcoding found type2
2’'b01: byte lane_enable_pr = 4’'b0010;

hardcoding found type2

AVIRAL MITTAL ISLI 2005/2006 100

IPBA : VC Evaluation Assignment

971: 2’bll: byte lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type2
973: default: byte lane_enable_pr = 4’'b0100;

VIOL:G5.3.2.1: hardcoding found typel
978: case (haddr[1:0])

VIOL:G5.3.2.1: hardcoding found type2
979: 2’'b00: byte _lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type2
980: 2’'b01: byte lane_enable_pr = 4’'b0100;

VIOL:G5.3.2.1: hardcoding found type2
981 2’'bll: byte lane_enable_pr = 4’'b0001;

VIOL:G5.3.2.1: hardcoding found type2
983: default: byte lane_enable_pr = 4’'b0010;

VIOL:G5.3.2.1: hardcoding found type2
989: byte lane_enable_pr=4'b1111;

VIOL:G5.3.2.1: hardcoding found type2
1000: byte lane_enable <= #tm_prop 4'b0;

VIOL:G5.3.2.1: hardcoding found type2
1017: mem_byte_enable_n_o <= #tm_prop 4'b1;

VIOL:G5.3.2.1: hardcoding found typel
1021: mem_byte_enable_n_o <= #tm_prop ~byte_lane_enable_pr[3:0];

VIOL:G5.3.2.1: hardcoding found type2
1038: mem_dataout_en_o <= #tm_prop 4'b0;

VIOL:G5.3.2.1: hardcoding found typel
1044 mem_dataout_en_o <= #tm_prop (byte_lane_enable[3:0] &
{4{mem_dataout_en_pr}});

VIOL:G5.3.2.1: hardcoding found type2
1226: mem_address_o <= #tm_prop 32’h0;

VIOL:G5.3.2.1: hardcoding found typel
1265: hrdata[31:0] <= #tm_prop 32’h00000000;

VIOL:G5.3.2.1: hardcoding found typel

AVIRAL MITTAL ISLI 2005/2006

101

IPBA : VC Evaluation Assignment

1279: hrdata[31:24] <= #tm_prop ~mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found typel
1283: hrdata[31:24] <= #tm_prop mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found typel
1291: hrdata[23:16] <= #tm_prop ~mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found typel
1295: hrdata[23:16] <= #tm_prop mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found typel
1303: hrdata[15:8] <= #tm_prop ~mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found typel
1307: hrdata[15:8] <= #tm_prop mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found typel
1315: hrdata[7:0] <= #tm_prop ~mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found typel
13109: hrdata[7:0] <= #tm_prop mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found typel
1329: hrdata[31:24] <= #tm_prop mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found typel
1334: hrdata[23:16] <= #tm_prop mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found typel
1339: hrdata[15:8] <= #tm_prop mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found typel
1344: hrdata[7:0] <= #tm_prop mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found typel
1370: hwdata_businvert_capture[35:27] <= #tm_prop
bus_invert_coder(hwdata[31:24],mem_dataout_o[31:24],mem_invertbits_0[3]);

VIOL:G5.3.2.1: hardcoding found typel
1371: hwdata_businvert_capture[26:18] <= #tm_prop
bus_invert_coder(hwdata[23:16],mem_dataout_o0[23:16],mem_invertbits_o[2]);

VIOL:G5.3.2.1: hardcoding found typel

1372: hwdata_businvert_capture[17:9] <= #tm_prop
bus_invert_coder(hwdata[15:8],mem_dataout_o0[15:8],mem_invertbits_o[1]);

AVIRAL MITTAL ISLI 2005/2006 102

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1: hardcoding found typel
1373: hwdata_businvert_capture[8:0] <= #tm_prop
bus_invert_coder(hwdata[7:0],mem_dataout_o[7:0],mem_invertbits_o[0]);

VIOL:G5.3.2.1: hardcoding found typel
1379: hwdata_businvert_capture[35:0] <= 36'b0;

VIOL:G5.3.2.1: hardcoding found typel
1407: mem_dataout_0[31:0] <= #tm_prop 32’h00000000;

VIOL:G5.3.2.1: hardcoding found typel
1408: mem_invertbits_0[3:0] <= #tm_prop 4’h0;

VIOL:G5.3.2.1: hardcoding found typel
1421 mem_dataout_o0[31:24] <= #tm_prop hwdata_businvert_capture[34:27];

VIOL:G5.3.2.1: hardcoding found typel
1426: mem_dataout_0[23:16] <= #tm_prop hwdata_businvert_capture[25:18];

VIOL:G5.3.2.1: hardcoding found typel
1431.: mem_dataout_0[15:8] <= #tm_prop hwdata_businvert_capture[16:9];

VIOL:G5.3.2.1: hardcoding found typel
1436: mem_dataout_o[7:0] <= #tm_prop hwdata_businvert_capture[7:0];

VIOL:G5.3.2.1: hardcoding found typel
1444: mem_dataout_0[31:24] <= #tm_prop hwdata[31:24];

VIOL:G5.3.2.1: hardcoding found typel
1448: mem_dataout_0[23:16] <= #tm_prop hwdata[23:16];

VIOL:G5.3.2.1: hardcoding found typel
1452: mem_dataout_0[15:8] <= #tm_prop hwdata[15:8];

VIOL:G5.3.2.1: hardcoding found typel
1456: mem_dataout_o[7:0] <= #tm_prop hwdata[7:0];

VIOL:G5.3.2.1: hardcoding found type2
1551: wait_state_cntr <= #tm_prop 4'b0000;

VIOL:G5.3.2.1: hardcoding found type2
1558: 3'b100: // Load read wait state value

VIOL:G5.3.2.1: hardcoding found type2
1562; 3'b010: // Load write wait state value

AVIRAL MITTAL ISLI 2005/2006 103

IPBA : VC Evaluation Assignment

VIOL:G5.3.2.1: hardcoding found type2
1566: 3'b001: // enable counter

VIOL:G5.3.2.1: hardcoding found type2
1573: assign b_wait_states_left = (wait_state cntr == 4’b0000) ? 0 : 1,

AVIRAL MITTAL ISLI 2005/2006 104

	Table 1: G 5.2.1(example)
	Table 2: R 5.2.1.1
	Table 3: G 5.2.1.2
	Table 4: G 5.2.1.3
	Table 5: G 5.2.1.4
	Table 6: G 5.2.1.4a
	Table 7: G 5.2.1.5
	Table 8: G 5.2.1.6
	Table 9: G 5.2.1.7
	Table 10: G 5.2.1.8
	Table 11: G 5.2.1.9
	Table 12: R 5.2.1.10
	Table 13: R 5.2.1.11
	Table 14: G 5.2.1.12
	Table 15: G 5.2.1.13
	Table 16: R 5.2.4.1
	Table 17: R 5.2.5.1
	Table 18: G 5.2.1.2
	Table 19: G R5.2.6.1
	Table 20: G 5.2.7.1
	Table 21: G 5.2.8.1
	Table 22: G 5.2.8.2
	Table 23: G 5.2.9.1
	Table 24: R 5.2.10.1
	Table 25: G 5.2.10.2
	Table 26: G 5.2.10.3
	Table 27: G 5.2.10.4
	Table 28: RG 5.2.11.1
	Table 29: R 5.2.11.2
	Table 30: G 5.2.11.3
	Table 31: G 5.2.13.1
	Table 32: G 5.2.14.1
	Table 33: G 5.2.14.2
	Table 34: G 5.2.15.3
	Table 35: G 5.2.15.4
	Table 36: R 5.2.15.5
	Table 37: G 5.3.2.1
	Table 38: G 5.3.4.1
	Table 39: G 5.3.5.1
	Table 40: G 5.3.6.1
	Table 41: G 5.3.6.2
	Table 42: G 5.4.1.1
	Table 43: R 5.4.1.2
	Table 44: R 5.4.1.3
	Table 45: R 5.4.1.4
	Table 46: G 5.4.2.1
	Table 47: G 5.4.3.1
	Table 48: G 5.4.4.1
	Table 49: G 5.4.5.1
	Table 50: G 5.4.5.2
	Table 51: G 5.4.6.1
	Table 52: G 5.4.6.2
	Table 53: G 5.5.1.1
	Table 54: R 5.5.2.1
	Table 55: G 5.5.2.2
	Table 56: G 5.5.4.1
	Table 57: R 5.5.5.1
	Table 58: G 5.5.5.2
	Table 59: R 5.5.6.1
	Table 60: G 5.5.7.1
	Table 61: G 5.5.8.1
	Table 62: G 5.5.9.1
	Table 63: G 5.5.9.2a
	Table 64: G 5.5.9.3
	Table 65: G 5.5.9.4
	Table 66: G 5.6.1.1
	Table 67: G 5.6.2.1
	Table 68: G 5.6.3.1
	Table 69: G 5.6.4.1
	Table 70: G 5.6.4.2
	Table 71: G 5.6.5.1
	Table 72: G 5.6.7.1
	Table 73: G 5.6.7.2
	Table 74: G 5.6.7.3
	Table 75: G 5.6.7.4
	Table 76: G 5.6.8.1
	Table 77: G 5.7
	Table 78: G 5.8
	Table 79: R 6.2.1.1
	Table 80: R 6.2.2.1
	Table 81: G 6.2.4.1
	Table 82: G 6.2.5.1
	Table 83: G 6.2.7.1
	Table 84: R 7.1.3.1
	Table 85: G 7.1.3.1
	Table 86: G 7.3.1.2
	Table 87: G 7.3.2.2
	Table 88: G 7.3.2.3
	Table 89: G 7.3.2.5
	Table 90: G 7.3.2.6
	Table 91: G 11.6.2.1
	Table 92: R 11.6.2.2
	Table 93: G 11.6.2.3
	Table 94: G 11.6.2.4
	Table 95: R 11.6.2.5
	Table 96: R 11.6.3.1
	Table 97: G 11.6.3.2
	Table 98: G 11.6.3.3
	Table 99: G 11.7.2.1
	Table 100: G 11.7.6.7
	Table 101: R 9.1.1.1.1
	Table 102: R 9.1.1.1.3
	Table 103: R 9.1.1.1.4
	Table 104: R 9.1.1.1.5
	Table 105: R 9.1.1.1.6
	Table 106: R 9.1.1.1.7
	Table 107: R 9.1.1.2.1
	Table 108: R 9.1.1.2.2
	Table 109: R 9.1.1.3.1
	Table 110: R 9.1.1.3.2
	Table 111: G 9.1.1.4.1
	Table 112: G 9.1.1.3.2

