
IPBA : VC Evaluation Assignment

AVIRAL MITTAL ISLI 2005/2006 1

Student Name: Aviral Mittal
Student’s Email aviral.mittal@sli-insti-

tute.ac.uk, avimit@yahoo.com
ISLI Registration Number 2005/21
Module IPB
Assignment Lecturer Prof Trughul Arslan

IPBA : VC Evaluation Assignment

AVIRAL MITTAL ISLI 2005/2006 2

This Report consist of following 6 Sections.

• Section 1: General Introduction

1.1 Aims and Objectives of this exercise
• Section 2: Soft IP Evaluation:

2.1 Introduction to Soft IP Evaluation
2.2 Steps
2.3 Rules and Guidelines, how far each rule was followed/not followed, and why with exam-
ple corrections

2.3.1 System Level Design Issues: Rules and Tools
2.3.2 RTL Coding Guidelines

2.3.2a: Comment upon overall results and quality of RTL
2.3.3 Macro Synthesis Guidelines
2.3.4 Verification Guidelines
2.3.5 Deliverable Guidelines

2.4 Results
• Section 3 Hard IP Generation and Evaluation

3.1 Introduction to IP Hardening Process and Hard IP Evaluation
3.2 Steps
3.3 Results

• Section 4: Common or total Results and results discussion

• Section 5: Comment on OpenMore

• Section 6: Appendix

A Filled OpenMore Spread sheet
B Figures from Hard IP Generation Process
C Scrips (Perl Code) used to evaluate some of the guidelines/Rules
D Log files generated by the script, if there are too many violations corresponding to a rule.
As it might not be possible to put all the violations corresponding to a single guideline in mid-
dle of the report.

IPBA : VC Evaluation Assignment

AVIRAL MITTAL ISLI 2005/2006 3

Section 1: General Introduction.
As the IP business is rising, and more and more companies are adopting business models based on
IP licensing. With the perpetual increase in IPs in the market, the problem of ‘how good’ and IP is
also increasing with a great pace. There are various criteria of evaluating ‘how good’ an IP is,
such as functionality, technology, performance, cost, area, support, power, reuse etc. The scope of
this assignment is to focus on ‘reuse’.
Now there can be various ways in ‘reusability’ can be evaluated, among them is OpenMORE
assessment program, developed jointly my Synopsys and Mentor Graphics. OpenMore assess-
ment program is based on the Reuse Methodology Manual (RMM). The focus of this exercise will
be on the RMM Section 5 i.e RTL Coding Guidelines, however the RMM section 1 i.e Macro
Design Guidelines, and RMM Section 3 i.e System-Level Design Issues: Rules and Tools, will
also be addressed briefly.

Although a soft-ip has been provided, but to be able to ‘evaluate’ it to a degree of satisfaction,
the IP will also be hardened. That is, the scope of this assignment will also cover a method to con-
vert the soft-ip i.e RTL to hard-ip i.e layout or GDSII using industry standard tools. So this assign-
ment report will also provide a section on RTL to GDSII flow that will be run on the soft-ip,
which will produce a final hardened layout of the IP provided. Issues (if any) during the hardening
process will also be discussed. The process of hardening the IP will be discussed in Section 3
“Hard IP Generation and Evaluation”.

Section 1.1 Aims and Objectives of this exercise

Following is the point wise description of the objectives/aims of this assignment:
• Evaluate the IP against the OpenMORE assessment criteria: This will greatly help us in

understanding the basic RTL coding guidelines that ‘must’ be followed while writing a indus-
try standard IP.

• Harden the IP: This will greatly help us understand the industry standard process of convert-
ing an RTL to GDSII. This might also help in catching problems in the IP, which might be an
issue in converting the RTL into a layout.

• To be able to read and understand an industry standard documentation and use it to understand
the IP and the IP environment provided.

• To be able to learn the skills and tools used to evaluate an industry standard IP.

Notes: The Openmore spreadsheet submitted with this assignment will not have comments in
SOFT IP evaluation section. This is because detailed comments on each guideline are made in
this report. However in the HARD IP section, the spread sheet will have all the comments, as the
evaluation is done only on the spread sheet.

IPBA : VC Evaluation Assignment

itself
od-

are
st
nd
nder-
lines
o not

nt, IP

there
rform-

 if
cript
ead-
 this
me
s
ay

line. A
ode

fol-
mple,
plex

e IP.
 put

except
Section 2:Intr oduction to Soft IP Evaluation
The evaluation of the soft-ip is done using the OpenMORE assessment program, which is
based upon the RMM. The evaluation will focus mainly on Section 5 of RMM i.e on “RTL C
ing Guidelines”, and will go through the other Sections briefly.

RTL stands for Register-Transfer-Level, which is used to code the hardware using a Hardw
Description Language so that the resulting code can be ‘synthesized’ into a gate level netli
which should be ‘functionally’ equal to the HDL code. RMM Section 5 provides guidelines a
rules which when followed make the HDL code or the IP more reusable, easy for others to u
stand, easy for others to modify, more synthesis friendly, more portable. These simple guide
when followed can make the IP very much more marketable as compared to the one which d
follow these guidelines.

Section 2.1: Steps
• Read documentation and have as much information as possible about the IP environme

use, IP naming conventions. Comment upon the documentation.
• Run Simulation Scripts, Synthesis Scripts, post synthesis simulation scripts, and see if

are any problems with these. Comment upon the scripts and how far they succeed in pe
ing the task they were designed to do.

• Focus on RTL code, (all RTL files), take one by one the ‘RTL coding guidelines’ and see
they are followed. For some guidelines/rules, it might be possible to write a simple perl s
which will report any violations of the guidelines/rules. This will help in saving time, as r
ing the whole RTL code with respect to only one guideline can be very time consuming,
will also help in quickly evaluating IPs in future i.e. scripts can be re-used. But at the sa
time it is also recognised that writing script for all the guidelines is a complex task and i
beyond the scope of this assignment. Also, The scripts written will be very simple and m
not be considered as a 100% secure method to report a violation against a given guide
score for each rule/guideline will then be assigned. Appendix A will contain the source c
of all perl scripts used along with information about which guideline/rule it refers to.

• For each guideline/rule, a table just like the one shown below will be used.

A detailed comment if needed will follow the table, describing if or not the guideline/rule was
lowed and why. A correction may also be suggested. Please note that if a rule/guideline is si
no explanation will be given for what the given rule/guideline itself means, however for com
rules/guidelines a good explanation will be given.
It is to be noted that the scoring in each table refers to all the RTLs taken as one entity for th
In some cases if the guideline/rule as a number of violations, the full log of violations will be
in Appendix D. All the headings in the table are the same as the OpenMORE spread sheet,
‘Script Used’ and ‘Score’. ‘Script used’ column will indicate the name of the script if used to

Table 1: G 5.2.1(example)

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1
AVIRAL MITTAL ISLI 2005/2006 4

IPBA : VC Evaluation Assignment

 will

h

ed

Over-
evaluate that particular guideline. If no script is used it will say ‘N/A’. The name of the table
be the RMM2 Section name. ‘Socre’ column tells the score given after assessment.

Section 2.3 Rules and Guidelines, how far each rule was followed/not followed, and why wit
example corrections
2.3.1 System Level Design Issues: Rules and Tools
2.3.2 RTL Coding Guidelines: Max Score 346

RMM2 5.2 Basic Coding Practices: Max Score 52
R5.2.1.1
..

Comment: Following are the documents provided with the IP
Readme_ipba_project.pdf
Environment_Strategy.pdf
Rapier_External_Memory_Controller.pdf
external_memory_programmers_guide.pdf
The documentEnvironment_Strategy.pdf Section 3.3.1 does say about naming conventions us
in verilog, and verilog actually uses those naming conventions.
The document also documents file naming conventions, directory structure in section 3.3.3.
all it gives a good proof of documenting naming coventions and use of the same.
Hence the Assessment for this guideline isAlways

G5.2.1.2
.

Comment: All the RTL(s) strictly followed the above guideline. Perl script ‘lcase.pl’ was used to
evaluate it, and it reported no instance of lower case letters used inports, wires, regs. There are no
user-defined types in the design. Hence the Assessment for this guideline isAlways.
Some examples from the RTL(s) are given below.

Table 2: R 5.2.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.1 Documented naming conventions used
consistently thought the design

R A 10 10 N/A

Table 3: G 5.2.1.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.2 Lower case letters for all signal names,
variables, and user-defined types

G A 2 2 lcase.pl
AVIRAL MITTAL ISLI 2005/2006 5

IPBA : VC Evaluation Assignment

d to
e RTL
 guide-
 reg b_transfer_on_bus; // True is there is a valid transfer
 // on the bus
 reg transfer_type; // Set to ‘AHB_WRITE if the transfer is
 // a write transfer, ’AHB_READ otherwise

 wire hsel; // hsel is true when any of the hsel_mem bits are true

 wire b_wait_states_left; // True if there are more wait states
 // left in this transfer
 wire b_error_condition;

G5.2.1.3
.

Comment: All the RTL(s) strictly followed the above guideline. Perl script ‘ucase.pl’ was use
evaluate it, and it reported no instance of lower case letters used in constants defined in th
using‘define. There are no user-defined types in the design. Hence the Assessment for this
line isAlways. Some examples from the RTL are given below:

‘define ST_IDLE 6’b000001
‘define ST_ERROR_START 6’b000010
‘define ST_READ_WAIT 6’b000100
‘define ST_WRITE_ADDR 6’b001000
‘define ST_WRITE_WAIT 6’b010000
‘define ST_READ_ADDR 6’b100000

G5.2.1.4
.

Table 4: G 5.2.1.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.3 Upper case letters for names of constants
and user defined types

G A 2 2 ucase.pl

Table 5: G 5.2.1.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.4 Meaningful names for signals, ports,
functions, and parameters

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 6

IPBA : VC Evaluation Assignment

is

d

r-

is
Comment: All the RTL(s) strictly followed the above guideline. Hence the Assessment for th
guideline isAlways. Some examples from the RTL are given below:

 input hclk; // AHB system clock. Only the rising edge of
 // this clock is used throughout the module.
 input hreset_n; // Active low AHB sychronous reset.
 input [3:0] hsel_mem; // Active high AHB memory bank select.
 // MEM3, MEM2, MEM1, MEM0.

G5.2.1.4.a
.

Comment: All the RTL(s) strictly followed the above guideline. Perl script ‘lcase.pl’ was use
again to evaluate it, and it reported no instance of upper case letters in‘inputs, outputs, regs,
wires’. So there cannot be any duplication of signals using different case. There are no use
defined types in the design. Hence the Assessment for this guideline isAlways.

G5.2.1.5
.

Comment: All the RTL(s) strictly followed the above guideline. Hence the Assessment for th
guideline isAlways. Below are given a few examples from the RTL(s)

parameter tm_prop = 20;
parameter par_little_endian = 1;

G5.2.1.6

Table 6: G 5.2.1.4a

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.4.a Names do not differ in case only G A 2 2 lcase.pl

Table 7: G 5.2.1.5

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.2 Short but descriptive names for elabora-
tion parameters

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 7

IPBA : VC Evaluation Assignment

s
ign

ot

ed
.

Comment: None of the RTL(s) followed the above guideline. Hence the Assessment for thi
guideline isNever. Below are given a few examples from the RTL(s). The clock used in the de
is called ‘hclk’ instead. Following is the line from the RTL(s) which shows the name as‘hclk’.
input hclk; // AHB system clock. Only the rising edge of
Perl script does not depend upon the comment, it checks for‘always @ (posedge any_signal)’,
and then determines that the ‘any_signal’ is a clock. Since the IP is targeted on FPGA, it does n
use any asyn resets, and hence anything following and ‘posedge’ in the design will be a clock sig-
nal.
Correction: The name of the clock can be ‘clk_h’ or even ‘clk_hclk’.

G5.2.1.7.

Comment: All of the RTL(s) strictly followed the above guideline. All the RTL(s) use clock call
‘hclk’ which is sourced by a single ‘hclk’ input at the top level. Hence the Assessment for this
guideline isAlways. Below are given a few examples from the RTL(s).

G5.2.1.8

Table 8: G 5.2.1.6

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.6 Name clk or prefix clk for the clock sig-
nals

G N 2 0 clkname.pl

Table 9: G 5.2.1.7

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.7 Same name for all clock signals driven
form the same source

G A 2 2 N/A

Table 10: G 5.2.1.8

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.8 Active low signal names end with an
uderscore followed by a lowercase char-
acter consistently(_n)

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 8

IPBA : VC Evaluation Assignment

guide-

s
he
ame

this
w

Comment: All of the RTL(s) strictly followed the above guideline. All the signals which are
described as ‘Active Low’ in comments use (_n) character. Hence the Assessment for this
line isAlways.Some examples from the RTL(s) are shown below:
input hreset_n; // Active low AHB sychronous reset.
output mem_output_enable_n_o; // Active low output enable signal

G5.2.1.9

Comment: None of the RTL(s) followed the above guideline. Hence the Assessment for thi
guideline isNever. Below are given a few examples from the RTL(s). The reset pin used in t
deign is called ‘hresest_n’ instead. Following is the line from the RTL(s) which shows the n
as ‘hreset_n’.
 input hreset_n; // Active low AHB sychronous reset.
Correction: The name of the above reset signal can be ‘rst_n’ or ven ‘rst_n_hreset’

G5.2.1.10

R5.2.1.11

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for
guideline isAlways. A script ‘downto.pl’ was used, it reported no violations.Below are given fe
examples from the RTL(s).
 input [3:0] hsel_mem;
 reg [1:0] hresp;

Table 11: G 5.2.1.9

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.9 Name or prefix rst used for reset signals.
If the reset signal is active low, user rst_n

G N 2 0 N/A

Table 12: R 5.2.1.10

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.10 VHDL Guideline Not Applicable R N/A 2 2 N/A

Table 13: R 5.2.1.11

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.11 If Verilog, always use (x:0) for multibit
ports or signals, rather than (0:x)

R A 10 10 downto.pl
AVIRAL MITTAL ISLI 2005/2006 9

IPBA : VC Evaluation Assignment

s and
ed

xes
 wire [1:0] hresp_reg;

G5.2.1.12

Comment: When binding an instance to wires, it is recommended that the names of the wire
the ports(of the instantiated module) must be simlar or same. All of the RTL(s) strictly follow
the above guideline. Hence the Assessment for this guideline isAlways. Following are the exam-
ples form the RTL(s).

i_ahb_ext_mem_con
 (.hclk (hclk),
 .hreset_n (hreset_n),
 .hsel_mem (hsel_mem),
 .hwrite (hwrite),

G5.2.1.13

Comment: None of the RTL(s) followed the above guideline. No signals were found wit suffi
‘_r’ , ‘_a’, ‘_pn’ , ‘_nxt’ , ‘_z’ Hence the Assessment for this guideline isNever.

End of RMM2 Section 5.2.1 Max Marks 52: Marks Scored = 36. %age = 69%

RMM2 5.2.3 Architecture Naming Conventions

Only applicable to VHDL.Not applicable here. Max marks = 2, Marks scored = 2.

RMM2 5.2.4 Headers in Source Files : Max Score 10

Table 14: G 5.2.1.12

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.12 Same name or similar names, for ports
and signals that are connected that are not
clocks

G A 2 2 N/A

Table 15: G 5.2.1.13

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.13 Signal naming conventions listed used
consistently and exhaustively

G N 2 0 N/A
AVIRAL MITTAL ISLI 2005/2006 10

IPBA : VC Evaluation Assignment

t for

m-

s in
guide-
R5.2.4.1

Comment: All of the RTL(s) strictly followed the above guideline. All the RTL(s) include a
header with filename, author, description, date, modification history. Hence the Assessmen
this guideline isAlways.

RMM2 5.2.5 Use Comments Max Score 12
R5.2.5.1

Comment: All of the RTL(s) strictly followed the above guideline. The RTL(s) are heavily co
mented. Hence the Assessment for this guideline isAlways.

G5.2.5.2

Comment: All of the RTL(s) strictly followed the above guideline. The ports, signals, variable
RTL(s) are commented, but not all of them have comments. Hence the Assessment for this
line isSometimes. Following are some examples:
Uncommented Port Names:
 input hwrite;
 input [1:0] htrans;
 input [2:0] hsize;

Table 16: R 5.2.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.4.1 Header included at the top of every source
file, including scripts, containing RMM
recommended elements.(author name is
optional)

R A 10 10 N/A

Table 17: R 5.2.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.5.1 Comments used generously to explain all
processes, functions, and declarations of
types and subtypes

R A 10 10 N/A

Table 18: G 5.2.1.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.1.2 All ports, signals and variables or groups
of signals or variables explained in com-
ments.

G S 2 1 N/A
AVIRAL MITTAL ISLI 2005/2006 11

IPBA : VC Evaluation Assignment

e-
-

 is

xam-
ingle
 input hready;
 input [31:0] haddr;
 input [31:0] hwdata;

Commented Ports:
 output hready_reg; // AHB register hready output.
 output hready_mem; // AHB memory hready output.
 output [1:0] hresp_reg;
 // AHB response. These modules only provide two types of response:
 // OKAY and ERROR
 output [1:0] hresp_mem;
 output [31:0] hrdata_reg; // AHB register data output for read cycles.
 output [31:0] hrdata_mem; // AHB memory data output for read cycles.

RMM2 5.2.6 Keep Commands on Separate Lines Max Score 10
R5.2.6.1

Comment: All of the RTL(s) strictly followed the above guideline. No occurrence of two stat
ments were reported by the script ‘seplie.pl’ which was used. The logic for finding this was look
ing for more than one semicolons in a single line. Hence the Assessment for this guideline
Always

RMM2 5.2.7 Line Length Max Score 2

G5.2.7.1

Comment: All of the RTL(s) strictly followed the above guideline. A script ‘chars132.pl’ was
used for this purpose. It reported no violations. Hence the Assessment for this guideline isAlways
The author has made efforts to follow this guideline, as is evident from the RTL code. For e
ple the following line in the RTL code has been put into 4 separate lines, instead of just a s

Table 19: G R5.2.6.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.6.1 Separate line used ofr each HDL state-
ment

R A 10 102 sepline.pl

Table 20: G 5.2.7.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.7.1 Line Length throughout consistently kept
to 132 characters or less

G A 2 2 chars132.p
l

AVIRAL MITTAL ISLI 2005/2006 12

IPBA : VC Evaluation Assignment

r care

ideline

this

this
line. This is a single statement and this statement could have violated the guideline, if prope
was not taken.
 if(
 (current_state == ‘ST_WRITE_ADDR && next_state == ‘ST_IDLE) ||
 (current_state == ‘ST_WRITE_ADDR && next_state == ‘ST_WRITE_WAIT) ||
 (current_state == ‘ST_WRITE_WAIT && next_state == ‘ST_WRITE_WAIT) ||
 (current_state == ‘ST_WRITE_WAIT && next_state == ‘ST_IDLE))
There are numerous occurrences of such statements in the design which proves that this gu
has been take care of, and its just not a coincidence that it is followed automatically

RMM2 5.2.8 Indentation Max Score 12

R5.2.8.1

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for
guideline isAlways. Following is an example of the code showing indentation
 begin
 if (hsel && hready && (htrans[1] == 1’b1))
 // Transfer request currently on the bus
 if (error_condition)
 begin
 slave_state <= ‘EMR_ERROR_WAIT;
 hready_resp <= 1’b0;
 hresp[1:0] <= 2’b01;
 end // if (error_condition)
 else if (hwrite) //write

G5.2.8.2

Comment: All of the RTL(s) strictly followed the above guideline. Hence the Assessment for
guideline isAlways. The number of space characters used for indentation is 2.

Table 21: G 5.2.8.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.8.1 Indentation used to improve the readabil-
ity of continued code lines and nested
loops.

R A 10 10 N/A

Table 22: G 5.2.8.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.8.2 Indentation of 1 to 4 spaces per indent;
number is consistent.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 13

IPBA : VC Evaluation Assignment

o
on

ence
ion

 time,
ion.
RMM2 5.2.9 HDL Reserved Words not used in HDL description Max Score 10

R5.2.9.1

Comment: All of the RTL(s) seem to follow the above guideline. It is however not possible t
check all the keywords because the list of keywords is very exhaustive. But the most comm
ones were checked for and RTL(s) did not show any occurrence of VHDL keywords in it. H
the Assessment for this guideline isAlways. The number of space characters used for indentat
is 2.

RMM2 5.2.10 Port Ordering Max Score 16

R5.2.10.1

Comment: As per the RMM2, the ports should be declared in the following order
Inputs:Clocks,Resets, Enables, Other control Signals,Data and address Lines
Outputs: Clocks,Resets,Enables,Other control Signals, Data.
The author of the IP has tried to follow this guideline as much as possible. But at the same
this guideline has also been violated, in order to group the ports together as per their funct
Hence the Assessment for this guideline isSometimes

G5.2.10.2

Table 23: G 5.2.9.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.9.1 VHDL or Verilog reserved words
excluded for names of any elements in
your RTL source files.

G A 2 2 N/A

Table 24: R 5.2.10.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.10.1 Ports declared in a logical order, consist-
ently within a given design

R S 10 5 N/A

Table 25: G 5.2.10.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.10.2 Ports are declared one per line, preferable
with a comment following it on the same
line.

G A 2 2 oneper-
line.pl
AVIRAL MITTAL ISLI 2005/2006 14

IPBA : VC Evaluation Assignment

by
ne per

are
ar in
Comment: All the RTL(s) have declared only one port per line. Although not always followed
a comment on the same line. But the main point here is it seems that the ports should be o
line, which is found to be followed consistently. A perl script ‘oneperlin.pl’ was written which
reported no violations. Hence the Assessment for this guideline isAlways. Here is some example
code showing that indeed only one port is declared per line.
 input [1:0] htrans;
 input [2:0] hsize;
 input hready;
 input [31:0] haddr; // AHB address bus bits.
 input [31:0] hwdata;

G5.2.10.3

Comment: The RTL(s) of the IP, follow this guideline to a certain extent. Although the clocks
declared first, followed by reset. But next in line are the ‘enable’ signals, which does not appe
the desired order. For example in the file ‘ahb_external_memory_control.v_rtl’the ports‘enable’,
‘mem_chip_enable_n_o’, ‘mem_output_enable_n_o’, ‘mem_write_enable_n_o’ which are ena-
ble signals are declared after the signals like‘read_wait_state0’, ‘read_wait_state1’,
read_wait_state2’, which are control signals.
Hence the Assessment for this guideline isSometimes..

G5.2.10.4

Comment: All RTL(s) follow this guideline.Following are some examples quoted from the
RTL(s).
 // AHB Inputs
 //-----------

 input hclk; // AHB system clock. Only the rising edge of
 // this clock is used throughout the module.

Table 26: G 5.2.10.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.10.3 Ports declared per recommended order G S 2 1 N/A

Table 27: G 5.2.10.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.10.4 Comments used to describe groups of
ports.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 15

IPBA : VC Evaluation Assignment

ory
in the
 input hreset_n; // Active low AHB sychronous reset.

 input [3:0] hsel_mem; // Active high AHB memory bank select.
 // MEM3, MEM2, MEM1, MEM0.

 input hwrite; // AHB transfer direction indicator. High
 // for write cycle, low for read cycle.

 input [1:0] htrans; // AHB transfer typ

 // AHB Outputs
 //------------

 output hready_resp; // AHB hready output.
 reg hready_resp;

 output [1:0] hresp; // AHB response. This module only provides.
 reg [1:0] hresp; // two types of response:
 // 00 = OKAY
 // 01 = ERROR
 // 10 = RETRY - not implemented
 // 11 = SPLIT - not implemented

 output [31:0] hrdata; // APB data output for read cycles.
 reg [31:0] hrdata;

 // Memory Device Outputs
 //----------------------

 output [3:0] mem_chip_enable_n_o; // Active low chip enable signals for
 reg [3:0] mem_chip_enable_n_o; // external memory devices.

Note that there are 3 examples of group of ports i.e ‘AHB inputs’ , ‘AHB Outputs’ and ‘Mem
Device Outputs’. Similarly the ports are described under ‘group of ports’ as far as possible
RTL(s) Hence the Assessment for this guideline isAlways

RMM2 5.2.11 Port Maps and Generic Maps Max Score 22
AVIRAL MITTAL ISLI 2005/2006 16

IPBA : VC Evaluation Assignment

ule
R5.2.11.1

R5.2.11.2

Comment: There are instatiations of objects in the top level verilog file. It strictly follows this r
as the port mapping is done using named association, as it is shown below.
 ahb_external_memory_registers #(tm_prop)
 i_ahb_ext_mem_reg
 (.hclk (hclk),
 .hreset_n (hreset_n),
 .hsel (hsel_reg),
 .hwrite (hwrite),
 .htrans (htrans),
 .hsize (hsize),
 .hready (hready),
 .haddr (haddr),
 .hwdata (hwdata),
 .hready_resp (hready_reg),
 .hresp (hresp_reg),
 .hrdata (hrdata_reg),
 .enable (enable),
 .read_only (read_only),
 .read_wait_state0 (read_wait_state0),
 .read_wait_state1 (read_wait_state1),
 .read_wait_state2 (read_wait_state2),
 .read_wait_state3 (read_wait_state3),
 .write_wait_state0 (write_wait_state0),
 .write_wait_state1 (write_wait_state1),
 .write_wait_state2 (write_wait_state2),
 .write_wait_state3 (write_wait_state3)
);

Table 28: RG 5.2.11.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.11.1 VHDL rule Not applicable R N/A 10 10 N/A

Table 29: R 5.2.11.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.11.2 If Verilog, always use explicit connection
for ports using named association rather
than positional association.

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 17

IPBA : VC Evaluation Assignment
 i_ahb_ext_mem_con
 (.hclk (hclk),
 .hreset_n (hreset_n),
 .hsel_mem (hsel_mem),
 .hwrite (hwrite),
 .htrans (htrans),
 .hsize (hsize),
 .hready (hready),
 .haddr (haddr),
 .hwdata (hwdata),
 .enable (enable),
 .read_only (read_only),
 .read_wait_state0 (read_wait_state0),
 .read_wait_state1 (read_wait_state1),
 .read_wait_state2 (read_wait_state2),
 .read_wait_state3 (read_wait_state3),
 .write_wait_state0 (write_wait_state0),
 .write_wait_state1 (write_wait_state1),
 .write_wait_state2 (write_wait_state2),
 .write_wait_state3 (write_wait_state3),
 .hready_resp (hready_mem),
 .hresp (hresp_mem),
 .hrdata (hrdata_mem),
 .mem_chip_enable_n_o (mem_chip_enable_n_o),
 .mem_output_enable_n_o (mem_output_enable_n_o),
 .mem_write_enable_n_o (mem_write_enable_n_o),
 .mem_byte_enable_n_o (mem_byte_enable_n_o),
 .mem_address_o (mem_address_o),
 .mem_datain_i (mem_datain_i),
 .mem_dataout_o (mem_dataout_o),
 .mem_invertbits_i (mem_invertbits_i), //Added by SO on 2/8/01
 .mem_invertbits_o (mem_invertbits_o), //Added by SO on 1/8/01
 .mem_dataout_en_o (mem_dataout_en_o)
);

Hence the Assessment for this guideline isAlways

G5.2.11.3

Table 30: G 5.2.11.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.11.3 Blank line between the input and output
ports to improve readability

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 18

IPBA : VC Evaluation Assignment

tput
s

’,
IP has
lines
eline
Comment: All RTL(s) follow this guideline. There is always a blankline between input and ou
ports. Hence the Assessment for this guideline isAlways. Following lines are quoted as example
form the RTL(s)

 output [31:0] hrdata_mem; // AHB memory data output for read cycles.

//---------------------------------
 input [31:0] mem_datain_i; // Memory device read databus.
 input [3:0] mem_invertbits_i; // Memory device read for invertbits.

 // Memory Device Outputs
 //---------------------------------

 // Active low chip enable signals for external memory devices.
 output [3:0] mem_chip_enable_n_o;

RMM2 5.2.12 VHDL Guideline, Not applicable Max Score 2

RMM2 5.2.13 Use Functions Max Score 2
G5.2.13.1

Comment: There are functions which are being used in the RTL such as ‘bus_invert_coder
‘binary2gray32’, and they are used wherever possible, which suggests that the author of the
taken care of this guideline. A closer look of the RTL code shows no occurrence of repeated
of RTL codes which might be put into a single function. Hence the Assessment for this guid
is Always

RMM2 5.2.14 Use Loops and Arrays Max Score 4

Table 31: G 5.2.13.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.13.1 Functions used whenever possible instead
of repeating the same sections of code
with comments to explain the function

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 19

IPBA : VC Evaluation Assignment

he

ents:
G5.2.14.1

Comment: Although there are ample examples of arrays being used in the RTL code. But t
Author has missed an opportunity to declare the following 4 ‘regs’ and 4 ‘wires’ as array.
 wire mem0_control_reg_sel,
 mem1_control_reg_sel,
 mem2_control_reg_sel,
 mem3_control_reg_sel;

 reg [9:0] mem0_control_reg,
 mem1_control_reg,
 mem2_control_reg,
 mem3_control_reg;

Correction: The declaration could have been as shown below:

 reg [9:0] mem_control_reg [3:0];
 wire[9:0] mem0_control_reg_sel;

This would have also given the author to use for loops instead of following multiple statem
 assign enable[0] = mem0_control_reg[0];
 assign enable[1] = mem1_control_reg[0];
 assign enable[2] = mem2_control_reg[0];
 assign enable[3] = mem3_control_reg[0];
the following could have been a replacement code instead of the 4 lines above.

reg [9:0] mem_control_reg [3:0]; //delcare the array

In an always block use the following code:
 for(i=0;i<4;i=i+1)
 begin
 mem_control_temp = mem_control_reg[i];
 enable[i] = mem_control_temp[0];
 read_only[i] = mem_control_temp[1];
 end

Similarly for loops could have been used for the lines below.

Table 32: G 5.2.14.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.14.1 Loops and arrays used for improved read-
ability of the source code

G S 2 1 N/A
AVIRAL MITTAL ISLI 2005/2006 20

IPBA : VC Evaluation Assignment

here
eems
rove
sign-
 assign read_only[0] = mem0_control_reg[1];
 assign read_only[1] = mem1_control_reg[1];
 assign read_only[2] = mem2_control_reg[1];
 assign read_only[3] = mem3_control_reg[1];

 assign read_wait_state0 = mem0_control_reg[5:2];
 assign read_wait_state1 = mem1_control_reg[5:2];
 assign read_wait_state2 = mem2_control_reg[5:2];
 assign read_wait_state3 = mem3_control_reg[5:2];
 assign write_wait_state0 = mem0_control_reg[9:6];
 assign write_wait_state1 = mem1_control_reg[9:6];
 assign write_wait_state2 = mem2_control_reg[9:6];
 assign write_wait_state3 = mem3_control_reg[9:6];
the following could have been a replacement code instead of
 for(i=0;i<4;i=i+1)
 begin
 mem_control_temp = mem_control_reg[i]
 enable[i] = mem_control_temp[0]
 read_only[i] = mem_control_temp[1]
 end

Hence the Assessment for this guideline isSometimes.

G5.2.14.2

Comment: The RTL(s) have followed this as far as possible. Following are some examples w
vector operations have been done. They could have been done in loops also. Although it s
quite obvious to use vector operations in the following code, but these are quoted here to p
that the above guideline is being followed in RTL. There are no instances of any looping as
ments in the RTL(s) which could have been done in vector operations.

 4’b1000 : hrdata[31:0] <= {22’b0, mem0_control_reg[9:0]};
 4’b0100 : hrdata[31:0] <= {22’b0, mem1_control_reg[9:0]};
 4’b0010 : hrdata[31:0] <= {22’b0, mem2_control_reg[9:0]};

Table 33: G 5.2.14.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.14.2 Vector operation on arrays rather than for
loops whenever possible.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 21

IPBA : VC Evaluation Assignment

ningful

s
e

 4’b0001 : hrdata[31:0] <= {22’b0, mem3_control_reg[9:0]};

Hence the Assessment for this guideline isAlways.

RMM2 5.2.12 Use meaningful lables Max Score 34

R5.2.15.1: VHDL Not Applicable, Score = 10
G5.2.15.2: VHDL Not Applicable, Score = 2

R5.2.15.3

Comment: There are 2 instances in all in the RTL, and each of them have been given mea
names as it is evident form the following lines of code:
ahb_external_memory_registers #(tm_prop)
 i_ahb_ext_mem_reg
 ahb_external_memory_control #(tm_prop, par_little_endian)
 i_ahb_ext_mem_con

Hence the Assessment for this guideline is Always

G5.2.15.4

Comment: Although the Author has tried to do something like this, but instead of ‘U_’ he ha
used ‘i_’ , so this guideline is not followed. The instantiations are quoted while describing th
R5.2.15.3 above, and is not being repeated here.
Hence the Assessment for this guideline isNever

Table 34: G 5.2.15.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.15.3 Each instance labeled with a meaningful
name

R A 10 10 N/A

Table 35: G 5.2.15.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.15.4 Each Instance labeled U_<name> G N 2 0 N/A
AVIRAL MITTAL ISLI 2005/2006 22

IPBA : VC Evaluation Assignment

la-

he

 in
port-

dix D

f hard-
R5.2.15.5

Comment : The RTL(s) follow this guideline to a great extent, however, following were 3 vio
tions reported by the script ‘uniq.pl’.
The 3 signals‘hready_resp’,’hresp’, ‘hrdata’, which are declared as ‘reg’ type appear in both t
2 files:ahb_external_memory_registers.v_rtland ahb_external_memory_control.v_rtl.
Hence the Assessment for this guideline isSometimes

RMM2 5.3 Coding for Portability: Max Scor e 42

RMM2 5.3.1 For VHDL Only Not A pplicable Max Score 24

RMM2 5.3.2 No hare coded Numeric Values Max Score 2

G5.3.2.1

Comment: None of the RTL(s) follow this guideline strictly. All the 3 files use numeric value
abundance. Its very difficult to check this manually, so a script ‘hardcode.pl’ was used for re
ing all the violations form all the files. The log generated by the script is given in the appen
showing all the violations reported by the script.
This point needs some elaboration. There can be many types of hard coding. In all 4 types o
coding were checked in the RTL(s)
1) Using a Numeric value in signal width declaration: Example
reg [7:0] mysig;//’7’ is hardcoding
2).Using a Numeric value before the tick(‘) while assigning a vector type: Example:
mysignal <= 10’d255;// ‘10’ is hardcoding.
3). Using a Numeric value after the tick(‘) while assigning a vector type: Example:
mysignal <= 10’d100;// ‘255’ is hardcoding.
4) Using a Numeric value to expand a vector: Example:

Table 36: R 5.2.15.5

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.2.15.5 Signal, Variable or entity names are not
duplicated

G S 10 8 uniq.pl

Table 37: G 5.3.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.3.2.1 No Hard-Coded Numeric Values in your
design (with possible exception of 1 and
0)

G N 2 0 hard-
code.pl
AVIRAL MITTAL ISLI 2005/2006 23

IPBA : VC Evaluation Assignment

 from

ideline.
mysignal <= 100{1’b1};// ‘100’ is hardcoding

All the four types of hardcoding were checked by the script.

Corrections: Following are a few examples which are hard coded, and their corrections.
 input [31:0] haddr;//: Not Recommended.
 input [wi-1:0] haddr;// Recommended, where ‘wi’ is a parameter which is equal to 32

Another Example
 reg [3:0] reg_addr; //Not Recommended
 reg_addr <= 4’b0000;//Not Recommended
 reg [width-1:0] reg_addr;//Recommended
 reg_addr <= {(width){1’b0}};//Recommended

Hence the Assessment for this guideline isNever

RMM2 5.3.3 For VHDL Only Not A pplicable Max Score 2

RMM2 5.3.4 Include Files: Max Score 2

G 5.3.4.1
G5.3.4.1

Comment: Two out of 3 RTL files use ‘define statements locally. Here is an example coded
one of the RTL(s)
‘define EMR_IDLE 3’b000
‘define EMR_ERROR_WAIT 3’b001
‘define EMR_ERROR_READY 3’b010
‘define EMR_READ_WAIT 3’b011
‘define EMR_READ 3’b100
‘define EMR_WRITE 3’b101
Whereas there should be a separate file containing all the ‘define statements, as per the gu

Hence the Assessment for this guideline isNever

RMM2 5.3.5 Avoid Embedding dc_shell Scripts Max Score 2

Table 38: G 5.3.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.3.4.1 If Verilog, then keep the ‘define state-
ments for a design in a single separate file

G N 2 0 N/A
AVIRAL MITTAL ISLI 2005/2006 24

IPBA : VC Evaluation Assignment

inde-

ry
 a

 porta-
G5.3.5.1

Comment: No occurrence of ‘dc_shell’ commands reported in any of the RTL(s). The IP is
pendent of these.
Hence the Assessment for this guideline is Always

RMM2 5.3.6 Technology-Independent Libraries Max Score 4

G5.3.6.1

Comment: Its recommended that there shouldn’t be any instantiations of gates from a libra
which is technology dependent. However the designer may choose to instantiate gates from
technology independent library, such as G-TECH (synopsys) so that the RTL code remains
ble.
However no gate/component instantiations were found form any kind of library in any of the
RTL(s), which means that the code is portable, technology independent.
Hence the Assessment for this guideline isAlways

G5.3.6.2

Table 39: G 5.3.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.3.5.1 No dc_shell scripts in design(except for
noted exceptions in RMM2)

G A 2 2 N/A

Table 40: G 5.3.6.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.3.6.1 Technology Independent Library(e.g
DesignWare Foundation Library) used to
maintain technology independence.

G A 2 A N/A

Table 41: G 5.3.6.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.3.6.2 No instantiated gates in the design, or
module-isolated technology specific gates
if instantiated gates are absolutely neces-
sary

G N 2 0 N/A
AVIRAL MITTAL ISLI 2005/2006 25

IPBA : VC Evaluation Assignment

ule,
n this
tly.

ed
Comment: If a designer has to instantiate gates in a design, he should write a isolated mod
which will have all the instantiations to make the code portable as far as possible. However i
IP since there are not instantiated gates, it can be said that this guideline was followed stric
Hence the Assessment for this guideline isAlways

RMM2 5.3.7 Coding for translation. for VHDL R TL Not A pplicable here Max Score 6

RMM2 5.4 Guidelines for clocks and resets Max Score 38

RMM2 5.4.1 Avoid Mixed clock edges Max Score 24
G5.4.1.1

Comment: All the RTL(s) fo the IP follow this guideline strictly. A positive edge is always us
throughout the IP. There are no occurrences of@ (negedge clk)in any of the RTLs
Below are some of the examples form RTL files of the IP, which show only@ (posedge clk) has
been used.
always @(posedge hclk)
 begin
 if (~hreset_n)
 begin
 mem0_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b11};
 end // if (~hreset_n)
 else
 begin
 if (mem0_control_reg_sel && write_strobe)
 begin
 mem0_control_reg[9:0] <= hwdata[9:0];
 end // if (mem0_control_reg_sel && write_strobe)
 end // else: !if(~hreset_n)
 end // always @ (posedge hclk)
Hence the Assessment for this guideline isAlways

Table 42: G 5.4.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.1.1 Single clock phase flip-flops(eigher +ive
or -ive edge) used throughout the design

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 26

IPBA : VC Evaluation Assignment
R5.4.1.2

Comment: Only positive edge used, So not applicable here.

R5.4.1.3

Comment: Only positive edge used, So not applicable here.
G5.4.1.4

Comment: Only positive edge used, So not applicable here.

RMM2 5.4.2 Avoid Clock Buffers Max Score 2

Table 43: R 5.4.1.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.1.2 If both positive-edge and negative-edge
triggered flip-flops are used, then the
worst case duty cycle is modelled for tim-
ing analysis and synthesis

R N/A 10 10 N/A

Table 44: R 5.4.1.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.1.4 If both positive-edge and negative-edge
triggered flip-flops are used, then the
assumed duty cycle is documented for the
user.

R N/A 10 10 N/A

Table 45: R 5.4.1.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.1.4 If both positive-edge and negative-edge
triggered flip-flops are used, then they are
separated into different modules.

G N/A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 27

IPBA : VC Evaluation Assignment

Clock
ded in
SII

s not
esign
the
G5.4.2.1

Comment: Clock buffers are usually desired when a single gate is seen to drive high loads.
buffers are also used to balance the clock skew throughout the design. But they are never co
RTL or instantiated in RTL. They are automatically inserted where ever needed in RTL to GD
flow.
In the given IP, no occurrence of clock buffers are reported.
Hence the Assessment for this guideline isAlways

RMM2 5.4.3 Avoid Gated Clocks Max Score 2

G5.4.3.1

Comment: Gated clocks are useful to save power in an IP. While a block of sequential logic i
active at a point of time, the clock of this block can be shut off, which saves power. In the d
flow these can be inserted by the tools.hence manual clock gating is not recommended In
given IP, no occurrence of gated clocks are reported.
Hence the Assessment for this guideline isAlways

RMM2 5.4.4 No Internally generated clocks Max Score 2

Table 46: G 5.4.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.2.1 No clock buffers in design; inserted after
synthesis in physical design stage

G A 2 2 N/A

Table 47: G 5.4.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.3.1 No gated clocks in design G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 28

IPBA : VC Evaluation Assignment

log’
e, it is
oblem

d.

d.

d.
G5.4.4.1

Comment: In the design flow, all the clocks which are required are generated mostly in ‘ana
area, where a pll is used to generate all the desired clocks with different frequencies. Henc
recommended, that there should not be any internally generated clocks, which usually a pr
in DFT.
In the given IP, no occurrence of internal division or multiplication of any clocks are reporte
Hence the Assessment for this guideline isAlways

RMM2 5.4.5 Gated clocks and low power design Max Score 4

G5.4.5.1

Comment: In the given IP, no occurance of internally generated resets or clocks are reporte
So this guideline is not applicable here.

G5.4.5.2

Comment: In the given IP, no occurance of internally generated resets or clocks are reporte
So this guideline is not applicable here.

Table 48: G 5.4.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.4.1 No internally generated clocks in design G A 2 2 N/A

Table 49: G 5.4.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.5.1 If a gated clock, or an internally generated
clock or reset, must be used, then the
clock and/or reset generation circuitry is a
separate module at the top level of the
design

G N/A 2 2 N/A

Table 50: G 5.4.5.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.5.1 If design requires a gated clock, then
model it using synchronous load registers,
as recommended (RMM2, P.95)

G N/A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 29

IPBA : VC Evaluation Assignment

p-
o-
RMM2 5.4.6 Avoid Internally generated resets Max Score 4

G5.4.6.1

Comment: In the given IP, no occurance of internally generated resets are reported.
So this guideline is not applicable here.

G5.4.6.2

Comment: In the given IP, no occurance of internally generated resets are reported.
So this guideline is not applicable here.

RMM2 5.5 Coding for Synthesis Max Score 50

RMM2 5.5.1 Infer Registers Max Score 2
G5.5.1.1

Comment: RTL coding style should be such that, it should be independent of any type of fli
flops. It should be left up to the synthesis tool to decide what flip-flops will fit for the RTL pr
vided.

Table 51: G 5.4.6.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.6.1 No internally generated, conditional
resets. Entire macro resets at one time

G N/A 2 2 N/A

Table 52: G 5.4.6.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.4.6.1 If a conditional reset is required, then cre-
ate a separate signal for the reset line and
isolate its generating logic in a separate
module

G N/A 2 2 N/A

Table 53: G 5.5.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.1.1 Technology-independent RTL style infers
registers(flip-flops) for sequential logic

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 30

IPBA : VC Evaluation Assignment

for

erred
 a

 say

 info as
This guideline has been strictly followed by the RTL(s) as we do not see any instantaitions
flip-flop types in the design.
Hence the Assessment for this guideline isAlways

RMM2 5.5.2 Avoid Latches Max Score 2
R5.5.2.1

Comment: RTL coding style should be such that, there should be no unintentional latches inf
by the synthesis tools. Usually an combinational process with ‘if’ or ‘case’ statement, within
combinational procedure, when not written carefully results in unwanted latches. That is to
that if in a combinational process, an‘if ’ statement has not been given an‘else’ statement, or in a
‘case’statement, if all the possible choices of‘case’ are not mentioned and there is no‘default’
corresponding to the case, then the synthesis tool tries to preserve the values, as it has no
what to do, and it puts latches in the design. For example:

always @ (mysignal1 or enable)
begin
 if((mysignal1) && (enable))
 begin
 output1 <= mysignal1;
 end
end

In the above example, the synthesis tool has no info on what to do if the conditionif((mysignal1)
&& (enable)) is false, and it tries to preserve the value assigned to‘output1’ when the above said
condition is true. To preserve the values, it puts a latch.

This guideline has been strictly followed by the RTL(s) as every‘if ’ statement has and‘else’ and
every‘case’ statement has a‘default’
Hence the Assessment for this guideline isAlways

Table 54: R 5.5.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.2.1 No Latch inference in RTL, especially
avoiding inferring R-S latches.

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 31

IPBA : VC Evaluation Assignment

n be

f the

om-
s rec-
esent
G5.5.2.2

Comment. Please see sec 5.2.2.1 above.
Since in every combinational process/block, output is specified for all input conditions, it ca
said that the IP follows this guideline strictly.
Hence the Assessment for this guideline isAlways
RMM2 5.5.4 Avoid combinational feedback Max Score 2
G5.5.1.1

Comment: Feedback in the design without any register/latch are not recommended. All the
RTL(s) follow this guideline strictly. There are no combinational feedback reported in any o
RTL of the given IP.
Hence the Assessment for this guideline isAlways

RMM2 5.5.5 Specify Complete Sensitivity lists Max Score 2
G5.5.1.1

Comment: Sensitivity lists are very important to simulation tools, where as synthesis tools c
pletely ignore them. So in order to match post synthesis simulations to RTL simulations, it i
ommended that all the signals/variables which are read in a given ‘always’ block, must be pr
in sensitivity list of that ‘always’ block. For example: consider an always block shown below

always
begin

Table 55: G 5.5.2.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.2.2 Consistent coding techniques as recom-
mended to avoid latch inference (RMM2,
P.100)

G A 2 2 N/A

Table 56: G 5.5.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.4.1 No combinational feedback; that is, the
looping of combinational process.

G A 2 2 N/A

Table 57: R 5.5.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.5.1 Complete sensitivity list in each
porcess(VHDL) or always(Verilog)
blocks

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 32

IPBA : VC Evaluation Assignment

ts
ist of
mula-

list
is a

t, so

king
/block
to
myoutput <= (input1 || input2) && (input3 || input4)
end
will synthesize correctly, where as when it will be simulated, ‘myoutput’ will never change. I
because this ‘always’ block reads 4 inputs and none of them are present in the sensitivity l
the ‘always’ block. So there will be a potential mismatch between pre and post synthesis si
tions.
In the given IP, no incomplete sensitivity lists are reported.
Hence the Assessment for this guideline isAlways

G5.5.5.2

Comment: If a process(VHDL) or a ‘always’ block in verilog is sequential, then the sensitivity
should ONLY contain clock signal and a reset signal. Reset signal can only be present if it
async reset.
In the given IP, this guideline is followed strictly. The IP does not make use of any async rese
all the sequential process have ONLY ‘hclk’ in their sensitivity lists.
Hence the Assessment for this guideline isAlways

RMM2 5.5.6 Blocking and Non-Blocking Assignments Max Score 2
R5.5.6.1

Comment: Out of the two types of assignment statements in verilog, blocking and non bloc
assignments, it is recommended that always use non-blocking assignments in any process
which is sensitive to clock. i.e that synthesizes in clocked registers. A perl script was used
check this called‘blocking.pl’ which reported no occurrence of blocking assignments in any
‘always’ block which is sensitive to the system clock‘hclk’ .
This guideline has been strictly followed by the RTL(s) : Here are some examples form the
RTL(s) which shows that this guideline has been followed.
always @ (posedge aviclock)

Table 58: G 5.5.5.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.5.2 Only necessary signals in each process
sensitivity lists, as defined (RMM2,
P.105)c

G A 2 2 N/A

Table 59: R 5.5.6.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.6.1 If Verilog, then nonblocking assignments
always used in always @ (posedge clk)
blocks for synthesis

R A 10 10 blocking.pl
AVIRAL MITTAL ISLI 2005/2006 33

IPBA : VC Evaluation Assignment

g
ment
 begin
 current_state <= #tm_prop next_state;
 if(hreset_n == 0)
 begin
 current_state <= #tm_prop ‘ST_IDLE;
 end
 end
 always @(posedge hclk)
 begin
 if (~hreset_n)
 begin

mem0_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b11};
 end // if (~hreset_n)
 else
 begin
 if (mem0_control_reg_sel && write_strobe)
 begin
 mem0_control_reg[9:0] <= hwdata[9:0];
 end // if (mem0_control_reg_sel && write_strobe)
 end // else: !if(~hreset_n)
 end // always @ (posedge hclk)

We can see that assignment has always been done using ‘<=’ which signifies a non-blockin
assignment, which is recommended. No occurrence of ‘=’ which signifies a blocking assign
which is not recommended.
Hence the Assessment for this guideline isAlways

RMM2 5.5.7 Infer Registers Max Score 2
G5.5.7.1

Comment: For VHDL not applicable here.

RMM2 5.5.8 Case Statement instead of if-then-else Statements Score 2

Table 60: G 5.5.7.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.7.1 If VHDL, then signals used instead of
variables for synthesizable RTL

G N/A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 34

IPBA : VC Evaluation Assignment

 is
hich
 all the

nt to

1,
own

 is
G5.5.8.1

Comment: It is recommended that while writing a conditional statement, a ‘case’ statement
used instead of several ‘if-then-else’. A vector is formed by concatinating the variables on w
the output depends, and then the newly formed vector is used in a case statement to cover
possible input conditions. For example consider the following if statement
 if(myvar1)
 output1 = input1;
 else if(myvar2)
 output1 = input2;
 else if(myvar3)
 output1 = input3;
 else if(myvar4)
 output1 = input4;
 else
 output1 =1’bx;
 end

Now using this has a disadvantage that input1 is prioritised against all other inputs,input2 is pri-
ortised against input2 andinput3, input3 is prioritised againstinput4, andinput4 gets least prior-
ity. Unless the priorities are deliberately needed, we would use the following ‘case’ stateme
implement this:
 case({myvar1,myvar2,myvar3,myvar4})
 4’b1000: output1=input1;
 4’b0100: output1=input2;
 4’b0010: output1=input3;
 4’b0001: output1=input4;
 default: output1=1’bx;
 endcase
this will give equal priority to‘input1’,’input2’.’input3’,’input4’.
Post synthesis of the ‘if’ implementation will result in a longer critical path as shown in Figure
whereas post synthesis of the ‘case’ implementation will result in a shorter critical path as sh
in Figure2. Also ‘if’ implementation is prioritised, whereas ‘case’ statement implementation
parallel.

Table 61: G 5.5.8.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.8.1 Case statements used rather than an if-
then-else statement wherever appropriate

G S 2 1 N/A
AVIRAL MITTAL ISLI 2005/2006 35

IPBA : VC Evaluation Assignment
Procedure 1

Figure 1: ‘if’ statement Implementation. Note that myvar4 is not used.

Figure 2.: ‘case’ statement Implementation.
AVIRAL MITTAL ISLI 2005/2006 36

IPBA : VC Evaluation Assignment

here

l part
 be dif-
 to the
This guideline has been followed by the RTL(s) but not always. Here are some examples w
‘else if’ can be noticed, which may have been written using case statement.
 if (error_condition)
 begin
 slave_state <= ‘EMR_ERROR_WAIT;
 hready_resp <= 1’b0;
 hresp[1:0] <= 2’b01;
 end // if (error_condition)

else if (hwrite) //write
 begin
 slave_state <= ‘EMR_WRITE;
 hready_resp <= 1’b1;
 hresp[1:0] <= 2’b00;
 write_strobe <= 1’b1;
 reg_addr[3:0] <= haddr[3:0];
 end // if (hwrite)
 else
 begin
 slave_state <= ‘EMR_READ_WAIT;
 hready_resp <= 1’b0; // wait state
 hresp[1:0] <= 2’b00;
 read_strobe <= 1’b1;
 reg_addr[3:0] <= haddr[3:0];
 end // else: !if(hwrite)

Hence the Assessment for this guideline isSometimes

RMM2 5.5.9 Infer Registers Max Score 2
G5.5.9.1

Comment: The way state machines should be coded in RTL is such that, the combinationa
should be made independent to the sequential part as far as possible. That is there should
ferent processes for sequential part and the combinational part. This gives a better chance
synthesis tool for better optimization. Figure 3 below shows the structure clearly.

Table 62: G 5.5.9.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.9.1 HDL description for state machines sepa-
rated into two processes, one for the com-
binational logic and one for the sequential
logic

G S 2 1 N/A
AVIRAL MITTAL ISLI 2005/2006 37

IPBA : VC Evaluation Assignment

he

hat
Procedure 1 should be coded like this:

always @ (all_inputs or ps)
begin
 ns <= f(ps,inputs);
end
Where f(ps,inputs) means function of ‘ps’ i.e present state, and ‘inputs’ i.e all the inputs to t
state machine

Procedure 2 should be code like this:

always @ (posedge clk)
begin
 ps <= ns;
end

Where ‘ps’ is the present state of the state registered, and ‘ns’ is the calculated next state t
would be loaded in the present state register at each clock edge.

Not all the state machines in the given IP, follow this guideline.

State Regiser(ps)

Combinational logic

Inputs

ns

clock

 ps

Figure 3 Recommended structure of a State Machine coded/realized in RTL

Procedure 2
AVIRAL MITTAL ISLI 2005/2006 38

IPBA : VC Evaluation Assignment
Following is an example where this guideline is followed.
 always @ (b_error_condition or b_transfer_on_bus
 or b_wait_states_left or current_state or transfer_type)
 begin
 next_state <= ‘ST_ERROR_START;
 case (current_state)
 .
 .
The above code corresponds to Procedure1, in figure 3.

Following is an example where this guideline is NOT followed:
 // State update
 // ---
 always @ (posedge hclk)
 begin
 current_state <= #tm_prop next_state;
 if(hreset_n == 0)
 begin
 current_state <= #tm_prop ‘ST_IDLE;
 end
 end

The above code corresponds to Procedure2, in figure 3.
 always @(posedge hclk)
 if (~hreset_n)
 begin
 slave_state <= ‘EMR_IDLE;
 hready_resp <= 1’b1;
 hresp[1:0] <= 2’b00;
 read_strobe <= 1’b0;
 write_strobe <= 1’b0;
 reg_addr <= 4’b0000;
 end
 else
 case (slave_state)
 ‘EMR_IDLE:
 //
 // When a valid bus cycle is taking place (htrans not
 // IDLE or BUSY) on the AHB, if the hsel signal is
 // asserted when hready is high then the target for the
 // bus cycle is the AHB slave.
 //
 // If an error condition exists then the transfer is
 // not allowed and an ERROR response will be issued.
 // Otherwise the transfer must be a valid read or
 // write cycle, and is handled accordingly.
AVIRAL MITTAL ISLI 2005/2006 39

IPBA : VC Evaluation Assignment

ure as

tate
e is
 //
 // The state machine remains in the IDLE state while no
 // transfers are pending.

 begin
 if (hsel && hready && (htrans[1] == 1’b1))
 // Transfer request currently on the bus
 if (error_condition)
 begin
 slave_state <= ‘EMR_ERROR_WAIT;
 hready_resp <= 1’b0;
 hresp[1:0] <= 2’b01;
 end // if (error_condition)
 else if (hwrite) //write

We can clearly see that this is an implicit state machine. There is a single sequential proced
opposed to 2 procedures which is not in line with what is recommended in this guideline.
Hence the Assessment for this guideline isSometimes

G5.5.9.2 VHDL guideline, Not applicable here

G5.5.9.2.a

Comment: All RTL(s) follow this guideline strictly. ‘define statements are used to define the s
vector always. As an example, following code is re-produced here showing that the guidelin
indeed followed.

‘define ST_IDLE 6’b000001
‘define ST_ERROR_START 6’b000010
‘define ST_READ_WAIT 6’b000100
‘define ST_WRITE_ADDR 6’b001000
‘define ST_WRITE_WAIT 6’b010000
‘define ST_READ_ADDR 6’b100000
Hence the Assessment for this guideline isAlways

Table 63: G 5.5.9.2a

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.9.2a In Verilog, use ‘define statements to
define the state vector..

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 40

IPBA : VC Evaluation Assignment

 have
M
 follow
r than

r,
sign,

 from
e

G5.5.9.3

Comment: 2 out of 3 RTL files has state machines in them, and both of the modules if, they
to follow this guideline, must not have anything else in them. All the logic apart from the FS
must be done in new module(s). It is also seems difficult and may be a bit un-necessary to
this guideline, because this will need a creation of another module for no good reason othe
just following this guideline.
Since this guideline is not followed in the given IP, the Assessment for this guideline isNever

G5.5.9.4

Comment: A ‘default’ assignment is always expected in a state machine, for the state vecto
which facilitates to define the power up value of the state-vector. There are 2 FSMs in the de
and a ‘default’ assignment is seen in both of them. Following is the code re-produced here
the file ‘ahb_external_memory_control.v_rtl’ showing the ‘default’ assignment. Note that the us
of a verilog ‘default’ key word isnot being made here, yet there is a default assignment. The
‘bold’ text highlights the line which does the ‘default’ assignment.

 always @ (b_error_condition or b_transfer_on_bus
 or b_wait_states_left or current_state or transfer_type)
 begin
 next_state <= ‘ST_ERROR_START;
 case (current_state)

 // --
 // Idle
 // --
 ‘ST_IDLE: begin

While the code from the other file ‘ahb_external_memory_registers.v_rtl’, shown below, in fact
uses verilog ‘default’ key word for the default assignment.

Table 64: G 5.5.9.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.9.3 FSM logic and non-FSM logic separated
into different modules.

G N 2 0 N/A

Table 65: G 5.5.9.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.5.9.4 Assign a default state for the state
machine

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 41

IPBA : VC Evaluation Assignment

rom
fined
es
ort

neces-
reg’
 default:
 // The default case is included to ensure correct
 // recovery from illegal states.

 begin
 slave_state <= ‘EMR_IDLE;
 hready_resp <= 1’b1;
 hresp[1:0] <= 2’b00;
 end // case: default
 // surefire coverage_on
 //verisureon

Hence the Assessment for this guideline isAlways

RMM2 5.6 Partitioning f or Synthesis Max Score 22

RMM2 5.6.1 Register all outputs Max Score 2
G5.6.1.1

Comment: The RTL should be written such that, all outputs from it must directly come out f
registers. This will then ensure that all outputs from the block are glitch free, and have a de
relationship with the clock. All RTL(s) in the IP follow this guideline strictly. Here is an exampl
of output port which are seen coming directly from an register. This example shows that a p
‘ read_only’, which is connected directly to ‘mem0_control_reg[1]’, which in turn is being
updated in a clocked procedure. This example is deliberately chosen, to show that it is not
sary to declare a port as a ‘reg’ type(every port is a ‘wire’ type by default in verilog, unless a ‘
is declared using the same name as of the port), if it needs to be coming from a register.

 output [3:0] read_only; // Active high level outputs. These are used
 assign read_only[0] = mem0_control_reg[1];
 always @(posedge hclk)
 begin
 if (~hreset_n)
 begin
 mem0_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b11};
 end // if (~hreset_n)
 else

Table 66: G 5.6.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.2.1 For each block of a hierarchial design, all
output signals from the block come
directly from registers

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 42

IPBA : VC Evaluation Assignment

ked

it is
 mod-

com-
dule
arate
e reqiu-
ed,
 begin
 if (mem0_control_reg_sel && write_strobe)
 begin
 mem0_control_reg[9:0] <= hwdata[9:0];
 end // if (mem0_control_reg_sel && write_strobe)
 end // else: !if(~hreset_n)
 end // always @ (posedge hclk)

No occurrence of any output port in RTL(s) are reported with do NOT come directly from cloc
register.
Hence the Assessment for this guideline isAlways

RMM2 5.6.2 Related Combinational logic in a single module Max Score 2
G5.6.2.1

Comment: To give the synthesis tool a better chance to epitomize the combinational logic,
recommended that all the related combinational logic should be placed together in a single
ule. In the given IP only one file ‘ahb_external_memory_control.v_rtl’ has combinational logic
inside it, which suggests that the author has followed this guildeline strictly.
Hence the Assessment for this guideline isAlways

RMM2 5.6.3 Separate Modules That Have Different Design Goals Max Score 2
R5.6.3.1

Comment: To give the synthesis tool, different constraints for different requirements, it is re
mended that the part of design which is timing critical should be separated in a different mo
with the part of the design which might be area critical. The area critical part can be kept sep
module, so that the designer can assign different constraints to different modules as per th
rement. If this guideline is followed, then the timing critical module can be epitomized for spe

Table 67: G 5.6.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.2.1 Related combinational logic placed
together in the same module

G A 2 2 N/A

Table 68: G 5.6.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.3.1 Critical path logic isolated in a separate
module from non critical path logic

G N/A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 43

IPBA : VC Evaluation Assignment

epa-

ny
 not
which might require more area. Other parts of the design can then be epitomized for area s
rately, giving a better design overall.
The given IP doesn’t seem to have very long critical paths. No multiplication or addition or a
other arithmetic function is seen in the IP, which suggests that this guideline is more or less
applicable here.
Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.4 Asynchronous Logic Max Score 2
G5.5.2.1

Comment: No Async logic in the design. ALL RTL(s) follow this guideline strictly.
Hence the Assessment for this guideline isAlways
G5.5.4.2

Comment: No Async logic in the design.
Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.5 Arithmetic Operators: Merging resources Max Score 2
G5.6.5.1

Comment: No arithmetic operators found in the IP.

Table 69: G 5.6.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.4.1 Asynchronous logic is avoided G A 2 2 N/A

Table 70: G 5.6.4.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.4.2 If Asynchronous logic is used, then it is
partitioned into a separate module and
modelled in a behavioural rather than a
structural style as suggested(RMM,
P.93)e

G N/A 2 2 N/A

Table 71: G 5.6.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.5.1 Partition arithmetic equations to leverage
automatic resource sharing in synthesis

G N/A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 44

IPBA : VC Evaluation Assignment

with
able
led a
e. A
one

en IP,
e can

apply

e of
Hence the Assessment for this guideline is Not Applicable.
RMM2 5.6.7 Avoid Point-to_poing Exceptions and False Paths Max Score 8
G5.6.7.1

Comment: Consider a simple block of combinational logic between two registers R1 and R2,
the delay T1, where the time period of the clock is Tclk. In some cases, if T1>T2, we may be
to get away with this timing violation by declaring the path between R1 and R2 as what is cal
multicycle path. This of course requires that the output of R2 is not used in each clock cycl
multicycle path is a risky design practice, which can easily produce serious errors if it is not d
very carefully. The guideline recommends that these should simply be not present. In the giv
there is no comment in the RTL or a mention of multicycle path in the documentation.So w
say that there are no multicycle paths in the given IP.
Hence the Assessment for this guideline isAlways
G5.6.7.2

Comment: Since there are no multicycle paths in the given IP, the above guideline does not
here.
Hence the Assessment for this guideline is Not Applicable.
G5.6.7.3

Comment: A false path is a datapath, which is effectively not active in a design. An exampl
false path is shown below:

Table 72: G 5.6.7.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.7.1 No Multicycle paths in your design G A 2 2 N/A

Table 73: G 5.6.7.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.7.2 If a multicycle path must be used, then
point-to-point exceptions maintained
within a single module and well-com-
mented

G N/A 2 2 N/A

Table 74: G 5.6.7.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.7.3 No false paths in the design G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 45

IPBA : VC Evaluation Assignment

analy-
s, and
er
in the
is not
false

e has
this is
on pur-
In the figure 4 shown above, the path fromd_out to d_in will never be active in the design,
because only one of the tristate buffers can be enabled at a given time. But the static timing
sis tool has no way of knowing this automatically. These kind of paths are called false path
must be explicitly told to the STA tool, wherever they are present. There may be several oth
kinds of false paths in the design, the above example is just one of those. Again using them
design is risky, as inappropriate use can easily result in setting a ‘false_path’ to a path which
actually a false path. The guideline says simple avoid them. Since there is no mention of any
path either in the document or in the RTL or synthesis scripts, we can say that this guidelin
been strictly followed. It might be that there has been no need of declaring false paths, and
just a coincidence that there are no paths which are declared as false, but for the IP evaluati
poses, there is no false paths no matter what the reason is.

Hence the Assessment for this guideline isAlways

G5.6.7.4

Comment: No false paths reported either in the document, RTL or synthesis scripts.
Hence the Assessment for this guideline is Not Applicable.

RMM2 5.6.8 Eliminate Glue Logic Max Score 2

Table 75: G 5.6.7.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.7.4 If a false path exists, it is documented* G N/A 2 2 N/A

enable

d_out

d_in

D

Figure 4. The path shown above from d_out to d_in is a false Path.
AVIRAL MITTAL ISLI 2005/2006 46

IPBA : VC Evaluation Assignment

ause

h
ferent

ories.

sing
G5.6.8.1

Comment: The top level RTL file is not expected to have gate level instantiations. This is bec
this kind of gate level logic inhibits the proper optmization by the synthesis tool.
There is no glue logic in the top level file ‘ahb_external_memory.v_rtl’
Hence the Assessment for this guideline isAlways

RMM2 5.7 Designing with Memories Max Score 2

Comment: IF an IP is written to deal with memories then in order that the IP works with bot
types of memories sycn and async, it is recommended that the write enable logic is in a dif
module to the module haveing address and data registers.The given IP does deal with mem
The registers are in one module ‘ahb_external_memory_registers’ and the control(i.e wiret enable
etc) are in a different module called ‘ahb_external_memory_control’
Hence the Assessment for this guideline isAlways

RMM2 5.8 Code Profiling Max Score 2

Comment: After an RTL is written, simulation is performed to check the functionality of the
design. But it is often advised profiling tools, which can measure the RTL code coverage u

Table 76: G 5.6.8.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.6.8.1 No instantiated gate-levle logic at the top
level of the design hierarchy

G A 2 2 N/A

Table 77: G 5.7

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.7.1 Address and data registers and the write
enable logic partitioned into separate
modules

G A 2 2 N/A

Table 78: G 5.8

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

5.8.1 Use code profiling to improve RTL G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 47

IPBA : VC Evaluation Assignment

ode is
line

gner a

erage.

ge

nes”

s

e the

nals
ced
your testbenche(s) or testvector(s). These tools report the frequency at which a line in RTL c
hit using your testvectors. Now if the frequency comes out to be 0 for any line, then either this
is redundat or the test vectors are not exhaustive enouth. This information can give the desi
hint of any problems that might be there in the IP.
The RTL code does suggest that code profiling is used. The comments likeverisureoff andver-
isureon suggests, that the author of the IP has take proper care of improving the code cov
A script is also provided for measuring the code coverage called ‘rtl_coverage.script’, however
due to the expired license of Verisure(from Verisity) the script did not run, and code covera
results cannot be analysed.
Hence the Assessment for this guideline isAlways

2.3.2a: Comment upon overall results and quality of RTL

The total Score obtained from the openmore excel sheet for this section “RTL Coding Guideli
is evaluated to be201/240 = 83.75 %.
Over the quality of RTL was found to be OK. I will discuss the negative and positive remark
here. First I will discuss negative remarks and finish off positive remarks will be discussed.

Negative Remarks:
1). Use of constants in RTL for conditional assignments:
There exists a serious problem in the RTL which is unprofessional, and which may jeopardis
market-ability of the RTL. The point brought here isvery important to improve the quality of the
RTL. That is the way constants are being used in the RTL of the given IP, and assigning sig
depending upon the value of those constants. The following ‘always’ procedure is re-produ
here which shows the problem.
 always @ (haddr or hsel_mem)
 begin
 if (‘ADDRESS_LOW_POWER_SELECT_0 ==1 && hsel_mem[0] == 1)
 begin :blk_low_power_adress_cap0
 if (‘DATA_SIZE_0==001)
 begin
 haddr_gray_capture <= binary2gray32(haddr); //Gray coding for 16 bit addressing
 end // if (‘DATA_SIZE_0==001)
 else if (‘DATA_SIZE_0==010)
 begin
 haddr_gray_capture <= binary2gray16(haddr); //Gray coding for 16 bit addressing
 end // if (‘DATA_SIZE_0==010)
 else if (‘DATA_SIZE_0==100)
 begin
 haddr_gray_capture <= binary2gray8(haddr); //Gray coding for 8 bit addressing
 end // if (‘DATA_SIZE_0==100)
 else
 begin
 haddr_gray_capture <= haddr;
 end
 end // block: blk_low_power_adress_capt0
AVIRAL MITTAL ISLI 2005/2006 48

IPBA : VC Evaluation Assignment

 of

f doing

as

d

 else if (‘ADDRESS_LOW_POWER_SELECT_1 ==1 && hsel_mem[1] == 1)
.
.
.
.
..
 end // always @ (haddr)

Now, we can see the use of two constants in the above procedure i.e
ADDRESS_LOW_POWER_SELECT_0 and DATA_SIZE_0, and depending upon the value
these constants the author is trying to assign the signal ‘haddr_gray_capture’. This is never done
in any professional IP. It doesn’t make any sense.
The problem here is to make the same IP useable in different scenarios. The proper way o
this is given below:

First write a generic function binary2gray, instead of 3 different functions binary2gray8,
binary2gray16, binary2gray32. Parameterise the function, and put it in a separate module.
given below:
module bin2gray(haddr_bin, haddr_gray);
 parameter width = 32;
 parameter data_size = 2;
 input [width-1:0] haddr_bin;
 output [width-1:0] haddr_gray;

 function [width-1:0] binary2gray;
 input [31:0] haddr_bin; // Binary code address from amba ahb bus
 reg [width-1:0] haddr_gray;
 integer i;

 begin
 haddr_gray = {(width + 1){1’b0}};//Design Compiler complains that variable is not initialise
 // if I don’t put this in

 haddr_gray[width-1] = haddr_bin[width-1];
 for(i = 0; i < data_size; i = i + 2) //i+2 because it should exit out of loop after 1 itration
 haddr_gray[data_size-1] = haddr_bin[data_size-1];
 for(i = 1; i < data_size; i = i + 1)
 haddr_gray[data_size-2] = haddr_bin[data_size-2]^haddr_bin[data_size-1];
 for(i = data_size; i < width-1; i = i + 1)
 haddr_gray[i] = haddr_bin[i] ^ haddr_bin[i + 1];

 binary2gray = haddr_gray;
 end
endfunction //binary2gray
AVIRAL MITTAL ISLI 2005/2006 49

IPBA : VC Evaluation Assignment

lock

t));

e-

t

un-

laining
tants

ever be

rms of

lue of

ide-

ends.
assign haddr_gray = binary2gray(haddr_bin);

endmodule

Then use this function/module as shown below instead of the long not very useful ‘always’ b
shown above
‘ifdef ADDRESS_LOW_POWER_SELECT_2
 bin2gray #(width, data_size) bin2gray_u0(.haddr_bin(haddr_bin), .haddr_gray(haddr_ou
‘else
 assign haddr_out = haddr_bin;
‘endif
The first line ‘ifdef ADDRESS_LOW_POWER_SELECT_2’ checks if somewhere the word
‘ADDRESS_LOW_POWER_SELECT_2’ is defined, if yes, then it ‘haddr_out’ gets the value from
the generic function ‘bin2gray’, otherwise ‘haddr_out’ gets the value of ‘haddr_bin’
directly.Note that it is not required to check thevalue of constant, just weather it is defined som
where or not will suffice. So a if a low power solution is required,
ADDRESS_LOW_POWER_SELECT_2will be defined somewhere in the environment, if it is no
defined, then a low power solution will automatically be dropped.
The parameter ‘data_size’ replaces the definition of the constant ‘DATA_SIZE_2’, which is
passed to the module containing the function ‘binary2gray’ and depending upon the value of the
parameter ‘data_size’ the generic function ‘binary2gray’ actually performs one of the old three
functions ‘binary2gray8’,binary2gray16’ or ‘binary2gray32’
We see how the 82 lines of code in the RTL is now changed to 5 lines, which is one of the
objectionable way to do the things which are desired.
Following are the disadvantages or problems with the coding style used in the IP which are
addressed by the alternative way suggested above
• The old code produces several warning messages when read in a synthesis tool, comp

about several branches which it says will ‘never be reached’. That is true because cons
are constants, they will never change.

• The code coverage will also be greatly reduced because again, several branches will n
hit by any sets of test vectors.

• Meaningless synthesis results may result, because the code does not make sense in te
hardware mapping.

Conclusion: Never let RTL check a value of a constant and do things depending upon the va
a constant. Its unprofessional and does not make any sense.

There are no other serious negative remarks.

Positive Remarks:

Leaving the point discussed above, the RTL quality is found to be good, with nearly 80% gu
lines followed.
Another thing which is pointed out here is the use of comments whenever a ‘always’ block
For example:
 always @ (haddr or hsel_mem)
AVIRAL MITTAL ISLI 2005/2006 50

IPBA : VC Evaluation Assignment

e
s intro-

m dis-
 begin
.
.
.

 end // always @ (haddr)

Note the use of ‘// always @ (haddr)’ where the ‘always’ block ends. This is a very good practic
and makes the code very much more readable. This is an extra feature, which the author a
duced apart from the guidelines, which helps the evaluator a lot.

Decision on IP based on RTL coding guidelines
Purchase of the IP is recommended based on RTL coding guidelines, as long as the proble
cussed above(i.e in negative remarks) are removed.
AVIRAL MITTAL ISLI 2005/2006 51

IPBA : VC Evaluation Assignment

clock
 sup-
cy is

clock
sub
Section 2.3.3 Macro Synthesis Guidelines

RMM2 6.2 Macro Synthesis Stratigy

RMM2 6.2.1 Macro Timing Budget

R6.2.2.1

Going through all the documentation, there were no mention of either timing budget or the
frequencies. There is no evidence of even the maximum or minimum frequency the design
ports in any documentation, however in one of the synthesis script ‘synthesis.prj’ the frequen
mentioned to be 200.00. But it definitely needs to be documented.
Hence the Assessment for this guideline isNever

RMM2 6.2.2 Sub block Timing Budget
R6.2.2.1

Going through all the documentation, there were no mention of either timing budget or the
frequencies. There is no evidence of even the maximum or minimum frequency any of the
block supports
Hence the Assessment for this guideline isNever

RMM2 6.2.4 Sub block synthesis Process 3 phases

Table 79: R 6.2.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

6.2.2.1 Timing budget for the macro developed as
part of the specification process, before
the design is partitioned into blocks and
before coding has begun.

R N 10 0 N/A

Table 80: R 6.2.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

6.2.2.1 Timing budget for each subblock in the
macro developed at the time the design is
partitioned into subblocks, and before
coding has begun.

R N 10 0 N/A
AVIRAL MITTAL ISLI 2005/2006 52

IPBA : VC Evaluation Assignment

 fol-
G6.2.4.1

Going through all the documentation, scripts, it can be said, that the above guideline is not
lowed. There is no evidence of reading the design block by block in synthesis script. All the
blocks are read at once, and one pass synthesis is done.
Hence the Assessment for this guideline isNever
RMM2 6.2.5 Macro Synthesis Process 3 phases

G6.2.5.1

Again same as above.
Hence the Assessment for this guideline isNever
RMM2 6.2.7 Preserve Clock and Reset Networks

G6.2.7.1

Table 81: G 6.2.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

6.2.4.1 The following subblock synthesis proc-
ess is used: 1) Compile subblock, using
constraints based on budget; 2) Character-
ize-compile whole subblock, to refine
timing constraints and re-synthesize sub-
block; 3) Iterate if required.

G N 2 0 N/A

Table 82: G 6.2.5.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

6.2.5.1 The following macro-level synthesis
process is used: 1) Compile each of the
subblocks, using constraints based on
budget; 2) Characterize-compile whole
macro to improve area and timing; 3) If
necessary, incremental compile per-
formed.

G N 2 0 N/A

Table 83: G 6.2.7.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

6.2.7.1 dont_touch_network specified on clock
and asynchronous reset networks and
included in the synthesis scripts for the
design - dc_shell scripts

G N/A 2 N/A
AVIRAL MITTAL ISLI 2005/2006 53

IPBA : VC Evaluation Assignment
No dc_shell scripts provided. The design synthesis is limited to FPGA target only.
Hence the Assessment for this guideline isNot Applicable
RMM2 6.5 Coding Guidelines for Synthesis Scripts

This section is omitted because ASIC synthesis script are not provided for the IP.
Hence the Assessment for this guideline isNot Applicable
AVIRAL MITTAL ISLI 2005/2006 54

IPBA : VC Evaluation Assignment

, i.e
. Giv-
y,

cov-
Section 2.3.4 Verification Guidelines

RMM2 7 : Macr o Verification
RMM2 7.1 Overview of Macro Verification
7.1.3 : Subblock Simulation

R7.1.3.1

Comment: Verification strategy seems to be quite exhaustive, as documented in
‘Environment_Statigy.pdf’. Although the small blocks does not use the self-checking system
text based system, but on the macro level, the testbench work with self-checking capability
ing a high degree of satisfaction. Their monitors, Scoreboards and also random test strateg
which all gave text results.
Hence the Assessment for this guideline isAlways

G7.1.3.2

Comment: Since the license of Verisure(from Verisity) has expired, the script given to do the
erage analysis i.e ‘rtl_coverage.script’ did not return results.
Hence the Assessment for this guideline isNot Applicable

RMM2 7.3 RTL Testbench Style Guide

RMM2 7.3.1: General Guidelines

Table 84: R 7.1.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.1.3.1 All response checking is done automati-
cally (not by viewing waveforms)

R A 10 10 N/A

Table 85: G 7.1.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.1.3.2 All subblock test suites achieve 100%
statement and path coverage as measured
by a test coverage tool.

G N/A 2 N/A
AVIRAL MITTAL ISLI 2005/2006 55

IPBA : VC Evaluation Assignment

de is

from the
G7.3.1.2

Comment: A high degree of partitioned is observed in the test bench. Very clear RTL style co
observed in the testbench file. ‘ahb_external_memory.v_tb’. Clearly clock generation and initial
values in ‘initial’ blocks are separated in the testbench. The rest of the code is RTL style.
Hence the Assessment for this guideline isAlways

RMM2 7.3.2: Generating Clocks and Resets

G7.3.2.2

Comment: Clock and Resets are indeed generated in separate processes. As it is evident
following lines quoted from the testbench file ‘ahb_external_memory.v_tb’

 repeat(6)@(posedge hclk);
 hreset_n <= 1;

 always
 begin
 #(CYCLE/2) hclk <= ~hclk;
 end // always begin

Hence the Assessment for this guideline isAlways

Table 86: G 7.3.1.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.3.1.2 Testbench code is partitioned into synthe-
sizable and behavioral sections. Behavio-
ral code is used to generate clocks and
resets and synthesizable code is used to
model a finite state machine that manipu-
lates and generates stimulus for the
design.

G A 2 2 N/A

Table 87: G 7.3.2.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.3.2.2 Separate processes used for clock genera-
tion, data generation, and reset genera-
tion.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 56

IPBA : VC Evaluation Assignment

lua-

efore
st-
G7.3.2.3

Comment: No evidence of multiple clocks
Hence the Assessment for this guideline isNot Applicable

G7.3.2.4 : VHDL coding guideline Not Applicable here

G7.3.2.5

Comment: This guide line needs detailed study of the testbench, so this is omitted from eva
tion.
Hence the Assessment for this guideline isNot Applicable

G7.3.2.6

Comment: The testbench is coded in RTL style. All procedures are clocked, stimulus is ther
generated with respect to the clock. For example the following code reproduced from the te
bench file ahb_external_memory.v_tb’ which clear shows this:
 always@(negedge hclk)
 begin
 if(hreset_n == 0)
 begin
 hgrant_m0 <= 1;

Table 88: G 7.3.2.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.3.2.3 If multiple asynchronous clocks, then a
separate process for each clock generation
is used.

G N/A 2 N/A

Table 89: G 7.3.2.5

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.3.2.5 Testbenches read and apply one vector
only per clock cycle.

G N/A 2 N/A

Table 90: G 7.3.2.6

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

7.3.2.6 Clocks used to synchronize stimulus gen-
eration. All data applied once every cycle
boundary with as few individual process
waits as possible.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 57

IPBA : VC Evaluation Assignment

e

 hgrant_m1 <= 0;
 hgrant_m2 <= 0;

Hence the Assessment for this guideline isAlways
RMM2 7.5 Timing Verification
7.5.1 : Use static timing analysis for timing verification

Comment: This guideline is followed, as it is evident from the document
‘Environment_Statigy.pdf’ . The tool used is given to be Synopsys’ Prime Time. However th
scripts are not given with the IP.
Hence the Assessment for this guideline isAlways
AVIRAL MITTAL ISLI 2005/2006 58

IPBA : VC Evaluation Assignment

rilog
given

nd
n

System Level Verification

RMM2 11.5 Prototyping
G 11.5.1 The macro has been implemented and verified on FPGA
The IP is basically targeted on FPGA
Hence the Assessment for this guideline isAlways

G 11.5.3 The macro is silicon proven at speed
The IP is a soft IP, and is yet to go on silicon
Hence the Assessment for this guideline isNot Applicable

RMM2 11.6 Gate Level Verification
11.6.2 Formal Verification
G11.6.2.1

Comment: This guideline is followed to an extent. There are naming conventions used in ve
coding, which are also documented, but the naming conventions do not match with the ones
in RMM2.
For example RMM2 recommends ‘*_r ’ for output of registers. Which is not there in RTL, how-
ever, the use of similar type of conventions are present in RTL such as use of ‘* _o’ for output sig-
nals.
Hence the Assessment for this guideline isSometimes

R11.6.2.2

Comment: ASIC synthesis scripts are not provided, however the FPGA scripts are simple a
there is no evidence of any commands which can/may change the functionality of the desig
Hence the Assessment for this guideline isAlways

Table 91: G 11.6.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.1 Macro follows naming convention
defined on p74, avoiding small or similar
name

G S 2 1 N/A

Table 92: R 11.6.2.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.2 The functionality of the macro is not
changed by synthesis script

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 59

IPBA : VC Evaluation Assignment

e

R11.6.2.3

Comment: No such commands present in synthesis scripts
Hence the Assessment for this guideline isAlways
G11.6.2.4

Comment: No evidence suggesting that
Hence the Assessment for this guideline isAlways
R11.6.2.5

Comment: No combinational feedbacks found in RTL
Hence the Assessment for this guideline isAlways

11.6.3: Gate level Simulation:
R11.6.3.1

Comment:ahb_external_memory.v_tb: is the testbench file, which is used in both RTL and Gat
level Simulations.
Hence the Assessment for this guideline isAlways

Table 93: G 11.6.2.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.3 Pragmas (compiler directives) are used in
RTL code instead of synthesis script com-
mands

G A 2 2 N/A

Table 94: G 11.6.2.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.4 Avoid any complex retiming at gate level G A 2 2 N/A

Table 95: R 11.6.2.5

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.5 Avoid combinational loop R A 2 2 N/A

Table 96: R 11.6.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.3.1 The test bench provided with RTL works
on gate level netlist

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 60

IPBA : VC Evaluation Assignment

o this
G11.6.3.2

Comment: No sdf provided.
Hence the Assessment for this guideline isNot Applicable

G11.6.3.3

Comment: The IP is targeted on FPGA, which provide a reset for registers automatically. S
guideline is not applicable here
Hence the Assessment for this guideline isNot Applicable
RMM2 11.7 Specialized Hardware for System Verification
11.7.2 RTL Acceleration
G11.7.2.1

Comment: One testbench file used. No evidence of small testbenches found
Hence the Assessment for this guideline isAlways
11.7.6 Design guidelines for accelerated verification

Table 97: G 11.6.3.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.2 The gate level simulation works with and
without SDF

G N/A 2 N/A

Table 98: G 11.6.3.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.6.2.3 If macro has memory elements, all mem-
ory elements are reset during reset phase.
If not, it is documented and the X propa-
gation is controlled in test plan.

G N/A 2 N/A

Table 99: G 11.7.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.7.2.1 Avoid collection of small testbenches
where the compilation time is larger than
the execution time

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 61

IPBA : VC Evaluation Assignment
G11.7.6.7

Comment: Design is found to be modular.
Hence the Assessment for this guideline isAlways

Table 100: G 11.7.6.7

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

11.7.6.7 Maintain hierarchical, modular design to
help reduce routing between processors.

G A 2 2 N/A
AVIRAL MITTAL ISLI 2005/2006 62

IPBA : VC Evaluation Assignment

f

Section 2.3.4 Deliverable Guidelines

RMM2 Section 9 RMM Deliverables

9.1 Soft Macro Deliverables
9.1.1 Product Files

R9.1.1.1.1

Comment: Synthesis Verilog present.
Hence the Assessment for this guideline isAlways
R9.1.1.1.2: VHDL guideline Not Applicable

R9.1.1.1.3

Comment: Application Notes present: Documents likeexternal_memory_programmers_guide.pd
provide them
Hence the Assessment for this guideline isAlways
R9.1.1.1.4

Comment: Synthesis scripts & timing constraints file present ‘synthesis.prj’
Hence the Assessment for this guideline isAlways

Table 101: R 9.1.1.1.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.1 If Verilog, synthesizable Verilog RTL
Source for the macro and its subblocks.

R A 10 10 N/A

Table 102: R 9.1.1.1.3

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.3 Application Notes with VHDL and Ver-
ilog Design Example.

R A 10 10 N/A

Table 103: R 9.1.1.1.4

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.4 Synthesis scripts & timing constraints R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 63

IPBA : VC Evaluation Assignment
R9.1.1.1.5

Comment: Design Target is FPGA. So these are not needed here.
Hence the Assessment for this guideline isNot Applicable
R9.1.1.1.6

Comment: Reference Library not given
Hence the Assessment for this guideline isNever
R9.1.1.1.7

Comment: No complex installation needed. All files present in one compressed file.
Hence the Assessment for this guideline isNot Applicable

R9.1.1.2: Verification Files

R9.1.1.2.1

Comment: Monitors are used in the testbench, and also documented.
Hence the Assessment for this guideline isAlways

Table 104: R 9.1.1.1.5

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.5 Scripts for scan insertion and ATPG. R N/A 10 N/A

Table 105: R 9.1.1.1.6

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.6 Reference library. R N 10 0 N/A

Table 106: R 9.1.1.1.7

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.1.7 Installation scripts. R N/A 10 N/A

Table 107: R 9.1.1.2.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.2.1 Bus functional model/monitors used in
testbench.

R A 10 10 N/A
AVIRAL MITTAL ISLI 2005/2006 64

IPBA : VC Evaluation Assignment
R9.1.1.2.2

Comment: Testbench files present.
Hence the Assessment for this guideline isAlways

R9.1.1.3: Documentation

R9.1.1.3.1

Comment: User Guide ‘external_memory_programmers_guide.pdf’ and
‘Rapier_External_Memory_Controller.pdf’ Present
Hence the Assessment for this guideline isAlways
R9.1.1.3.2

Comment: No Data Sheet Given.
Hence the Assessment for this guideline isNever

R9.1.1.4: System Integration Files

Table 108: R 9.1.1.2.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.2.2 Testbench files including representative
verification tests.

R A 10 10 N/A

Table 109: R 9.1.1.3.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.3.1 User guide / Functional specification. R A 10 10 N/A

Table 110: R 9.1.1.3.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.3.2 Datasheet. R N 10 0 N/A
AVIRAL MITTAL ISLI 2005/2006 65

IPBA : VC Evaluation Assignment

ble
G9.1.1.4.1

Comment: No Cycle based/Emulation models provided.
Hence the Assessment for this guideline isNever

G9.1.1.3.2

Comment: The design do not contain any software or software based function. Not Applica
Hence the Assessment for this guideline isNot Applicable

Table 111: G 9.1.1.4.1

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.4.1 Cycle-based/emulation models as appro-
priate for macro and/or its testbenches
and BFMs.

G N 2 0 N/A

Table 112: G 9.1.1.3.2

RMM Sec Guideline Type
Asses
sment

Max
Score

Score Script used

9.1.1.3.2 If macro has significant software require-
ments, such as microcontrollers and
microprocessors, then a list of system
integration tools (compilers, debuggers,
real-time operating systems and software
drivers) that support the macro is pro-
vided.

G N/A 2 N/A
AVIRAL MITTAL ISLI 2005/2006 66

IPBA : VC Evaluation Assignment

AVIRAL MITTAL ISLI 2005/2006 67

Section 2.4 : Results on Soft IP Evaluation and discussion:
Overall score of the soft IP evaluation was found to be 342/584, which is assessed as 67%, given
the weighted scores of different sections are different.
This score includes
#1.A score of 201/240 i.e 83% for RTL coding guidelines, which was the main criteria for the
IP assessment in this exercise. A detailed explanation and comment has already been given.
#2. A score of 0/56 for system level Issues : Rules and Tools: Most of the guidelines does not
apply for in this exercise. So this doesn’t mean that the IP has failed badly with respect to this
topic, but its just not enough info is given to be able to evaluate the IP again this topic
#3. A score of 0/108 for macro synthesis Guidelines: Again not much info has been given with the
IP to be able to evaluate the IP against this topic. The document said that the main target of the IP
was made to be FPGA instead of ASIC. So no dc_shell/ac_shell scripts were provided. Which
makes the evaluation of the IP against this topic as Not Applicable.
#4.A score of 61/68 i.e 90% for Verification guidelines: This is a very good score. This tells
that the verificaiton of the IP has been done largely as per guidelines.
#5. A score of 80/112 ie 62% on Deliverable Guidelines: Which is a reasonably good score.

Conclusion: Leaving the points #2 and #3 because they are mostly Not Applicable, the IP con-
forms to the Openmore Guidelines to a high degree.

IPBA : VC Evaluation Assignment

 a soft-
pply.

t.
he box
Section 3 : IP Hardening Process: RTL to GDSII
3.1 Introduction to IP Hardening Process and Hard IP Evaluation
This section gives details of how the IP was hardened and evaluated. Since the IP given is
IP and it is to be hardened locally, many of the guidelines in Hard IP evaluations does not a
The Hardening Process:

3.2 Steps
A soft IP given to us as RTL can be converted into final layout using the following flow char
The Left hand box shows the inputs of the step, the ellipse in middle shows the step and t
on right hand side shows the result of that step.

1. Synthesis

2. Static Timing Analysis

3. Floor plan and Power plan

RTL,
Library Tech file
Constraints i.e area

Netlist

Constraints,

Report contaning
Timing faliures

Netlist, LEF(Library),
Library Verilog Models

Netlist, RSPF(from

Layout with
Floorplan and power

Step 8)

Timing etc

Plan

ctlf, gcf
AVIRAL MITTAL ISLI 2005/2006 68

IPBA : VC Evaluation Assignment

n

4. Placement of cells(Qplace) Placed Layout

Floorplan

5. Clock Tree Generation(Ctgen)

Placed Layout

 Layout with clocktree

6. Routing(Connecting cells)+

Layout with clocktree

 Routed Layout
Post Routing

7. Verification, DRC, LVS

Routed Layout

Verified Layout

8. Write RSPf, SDF, DEF

Verified Layout

GDSII ready

Feedback RSPF in Static timing analysis(i.e step 2 in this chart) and sdf in simulatio
AVIRAL MITTAL ISLI 2005/2006 69

IPBA : VC Evaluation Assignment

ion.

ions,
con-

the
t the
ages

atio,
lso

t later
ally an
previ-

ing
It is to be noted that this is a simplified flowchart giving only main steps in the layout generat
The IP was hardened using the steps shown above. The tool used for steps 3 to steps 8 is
Cadence’s Silicon Ensemble.
Step wise discussion of the flow: Starting fr om step 3 ending at step 8.
Step 3. Floor Plan and Power Plan:
This steps creates the floor plan of the design. This step needs the following as inputs
1). The verilog netlist files: The netlist which is to be hardened
2). The verilog library files: The netlist contains just the name of the cells and their connect
however more information about each cell is required, which is present in library verilog file,
taining detailed model of each cell in the library, to which the design has been mapped.
3). The library LEF file: LEF stands for Library Exchange format. It is a text representation of
Abstract views, which are derived from the layouts of cells. It contains the information abou
position of pins, the pin definition for each cell in design, pin capacitance, blockages. Block
in a cell is a restricted area to which router is not allowed to route.

The purpose of this step is to create a black box of the design, which will define the Aspect R
the area of the chip, the number of ‘rows’ in which the cells will be placed. Row utilization is a
defined in this step.
It is a very difficult step to decide the area and row utilization. Because there are chances tha
in steps, the area can be found to be inadequate, or it can be a lot more than needed. Usu
iterative process is followed to decide the proper area and row utilization. Experience from
ous design also helps in this step a lot.

The core area is defined in this step.
The distance of the ‘rows’ in which cell will be placed from the IPs is defined in this step.
Results of the step:
Putting I/O to core distance of 30u and Row Utilization to 80% , and Aspect ratio to 1.0 follow
were the results.
Number of cells = 1308
Number of blocks = 0
Number of I/O pads = 0
Number of I/O Pins = 266
Number of Cornet Pads = 0
Number of Nets = 1619
Width of chip = 507.267u
Height of chip = 507.267u
Number of standard cell rows = 37
Area of Cells(sq microns) 160038.000
Chip Area = 257319.809 sq microns

Row Utilization was then changed to 90%
Following were the results of changing row utilization to 90%
Number of cells = 1308(same)
Number of blocks = 0(same)
Number of I/O pads = 0(same)
AVIRAL MITTAL ISLI 2005/2006 70

IPBA : VC Evaluation Assignment

e.
 will
d very
but
and

e
ill be

ow, a
vels
ted. To
o the

 to 5

mber
was

dis-
as

.
pads,
ows

 place-
rge
ttan

mise
ed to
Number of I/O Pins = 266(same)
Number of Cornet Pads = 0(same)
Number of Nets = 1619(same)
Width of chip = 481.687u(different)
Height of chip = 481.687u(different)
Number of standard cell rows = 35(different)
Area of Cells(sq microns) 160038.000(same)
Chip Area = 232022.366 sq microns

Comment on affect of changing row utilization.
Increasing row utilization will place more cells in one row, so the number of rows will reduc
This will also reduce the chip area. But it will make the routing more difficult because there
be less space between the cells for routing metal to pass. So if the row utilization is increase
much, the chip will more likely produce problems in physical verification i.e DRC and LVS,
on the other hand keeping it very low will be a waste of area. So a trade-off must be made
using some iterative processes, row utilization should be set to a reasonable value.
I/O pins in the design are also placed in this step along the periphery of the chip. Usually th
placement of the I/O is defined using a separate file, which defines where exactly an I/O w
placed. But for the purpose of this exercise, the I/Os were placed randomly.

This step also involves the definition of power stripes. To supply power to each and every r
power grid is usually made, which thicker metal. It is very important to maintain the VDD le
throughout the chip, so that the delays are consistent, and the noise margins are as expec
distribute power uniformly across the chip, a grid of power stripes is made, which connects t
‘rows’ of cells in later stages.
The tool allows us to define the width of the metal used for power ring. Which was selected
microns for metal 1 and metal 2 both.
Power stripes were then made, and the width(5u), Spacing(2u) of the power stripes and nu
of power stripes(3 sets) were also defined. The offset, i.e the distance from the power ring
also defined to be 100u form left as well as from right.
This step thus created a gird of power distribution for the whole chip, which helps in uniform
tribution of power i.e VDD and GND thought the design. For power stripes M2 i.e metal2 w
chosen.

At the end of this step we get a layout which has cell rows defined and power stripes made
Please see the attached Figures 1,2,3 which shows the area, number of I/Os, cells, corner
pins etc for row utilization value of 80%, 90%, and 85%. Figure 4 shows the the layout with r
which have been created. Figure 5 shows the Power Stripes and power rings as well.
Step 4. Placement of cells
The rows created in the layout is the place where the cells in the netlist will be placed. The
ment of cells in DSM flow is extremely important as this affects the timing of the design to a la
extent in DSM methodology. There are various algorithms to place the cells such as Manha
algorithm. All these algorithm helps in placing the cells in the rows created in Step3 to mini
the interconnect wire length. They help in placing those cells together which are more relat
each other.
AVIRAL MITTAL ISLI 2005/2006 71

IPBA : VC Evaluation Assignment

ls
ise
s the

t
d. For

ener-
med

s in a

ost
w in
there

esn’t
 chip

nt

e con-
rform
ed

e of

 to

upply

‘con-
en the

hows
In ASIC design methodology the placement was not as critical as in DSM flow. The new too
perform what is called ‘Timing Driven Placement’, for the placement of cells in rows to minim
the critical path delay. Since the timing are also being considered in this step, the tool require
timing information of each cell in the library as well. This is usually supplied as ‘ctlf’ file i.e
‘compiled timing library format’. Unlike the ASIC design flow, in DSM design flow, the layou
tools have the power to change the netlist logically, using more appropriate cells as require
example, the layout tool may change the drive strength of the cells as required.
Once the placement is done, usually in DSM flow, a more accurate ‘wire load models’ are g
ated, and the information is fed back into step 2) i.e static timing analysis. STA is then perfor
to see if the generated placement of cells is more likely to meet the timing requirements.
The placement of cells can also be ‘flipped’ in each row, so that the power pins/lines of cell
row can be abutted with the power lines in the adjacent row.

Cells in the netlist were placed in the rows created in step3 above.
Figure 6 clearly shows the placed cells in the layout.

Step 5. Clock Tree Generation(CTgen)

Clock tree is an important part of the design. Clock is one single net which has to go to alm
every place in the layout. Also the clock should be laid out in such a manner so that the ske
the clcok is within acceptable limits. This net usually has very large capacitive load because
can be thousands of flip-flops connected to a single clock net.
So there is a need for proper buffers in clock path, which will make sure that the clock net do
loose strength, and also it will put equal timing delay from the clock pin on the boundary of
to each flip-flop in the design, so that ‘skew’ is controlled.
This step then modifies the existing the clock tree, and optimize it according to the placeme
done in Step 4 above. In the practical exercise, this step failed given an unknown error.

Step 6. Routing(Connecting cells)+ Post Routing
The cells placed in steps above now needs to be connected together by physical wires. Th
nections are defined in the netlist file. To avoid shorts, several metal layers can be used to pe
routing. Also the layers have defined directions. For example a given layer will have a defin
direction i.e weather it runs horizontally or vertically.
If M1 is Left to Right or vice-versa, M2 will be top to bottom or vice versa, M3 will be Left to
Right or vice-versa, M4 will be top to bottom or vice versa and so on. This is a valid schem
metal routing direction, and very much used in practice.
All these metals ie M1 M2 M3 M4 are assigned different horizontal planes. ‘Vias’ are used
make connections between two metals on different horizontal planes.
Not only the cells are connected together in this step, the power rails are also connected to s
power to the full chip.
The first step was to connect the power rings, rails and power signals to pad/blocks. For this
nect ring’ command was used. Global routing was then done to make the connections betwe
cells.
In this exercise 5 Metal layers were used to make connections i.e M1, M2, M3, M4, M5
Fig 7 shows a clear picture of connected cells. Fig 8 shows a zoomed area from Fig 7 which s
the metal routing in a more elaborate way
AVIRAL MITTAL ISLI 2005/2006 72

IPBA : VC Evaluation Assignment

 the
layout
not a

Stand-

lay
vel

n

th

n
hed

s a
Step 7. Physical Verification DRC and LVS:
This step verifies the layout created in step 6 above. Design Rule Check is run, to see if all
design rules are followed. A layout versus schematic check is also performed to see that the
generated corresponds to the input netlist. This step however was not performed as it was
part of the exercise

Step 8: Write RSPF, SDF, DEF:
Parasitic extraction is performed, and put in a industry standard format i.e RSPF(Reduced
ard Parasitic Format), which is then fed back into step 2 i.e Static Timing Analysis. It is very
important that STA passes with this parasitic information. SDF is also written which is a de
file(Synopsys Delay Format or Standard Delay Format) which is used by post netlist gate le
simulations. The final design is then written out as a DEF(Design Exchange Format).

Answers to asked questions:
1). How many cells, blocks, IO pads, IO pins, Corner Pads and nets are contained in desig
Answer :
No of I/O cells = 1308
No of blocks = 0
No of I/O pads = 0
No of I/O pins = 266
No of Corner Pads = 0
No of nets = 1619
2). What is the area of the design
Area of chip = 234170.824 square microns, area of cells = 160038.000 square microns
3). How many layers are there in the design
Answer : 5
4). How many stripes were added to the design
Answer : 3
5). How many Stripe connections to core rings are there in the design
Answer 6. £ each for VDD and GND
6). Define block ring width
Answer: The width of the power ring is being referred to: It is defined to be 5 microns for bo
metal1 and metal2
7). If you need to add new stripes to a design, do you need to completely reset the floorpla
Answer No: New stripes will be added, and ‘Delete All Existing Stripes’ button can be switc
ON while doing that. So there is no need to reset the floorplan
8).If so why
Answer: No the floor plan doesn’t needs a reset. See explanation in answer to question 7
9) How is the aspect ratio calculated.
Answer: Aspect ratio is the ratio of Height/Width of the design. It is not calculated, it is given a
input field.
10). What is the desired value of aspect ratio
Answer : 1.
11). What is the die size of the design
Answer : Die size = chip area = 234170.824
AVIRAL MITTAL ISLI 2005/2006 73

IPBA : VC Evaluation Assignment

s value.
sing

 chip.
 each

 are

een 2
 using

 Vias

ter a
e now
fo is

oth
12). Name the power wires in the design:
Answer : vdd! and gnd!
13). Name the metal layers used for routing the power and ground wires
Answer: metal1 and metal2
14). Explain the role of power rings, power stripes and power rails on the chip.
Answer: This is done to distribute power uniformly throughout the chip. The value of VDD
should remain constant throughout the chip as noise margins, and delays depend upon thi
So there must not be any drop in VDD in the chip. To maintain VDD a power grid is made u
rings, stripes, and rails.
15) Which one of the wires in 14 can easily left out without causing problems on the routed
Answer: Not sure, guess, stripes can be left out, so that the horizontal rails supply power to
cell in the design
16). What are regular wires
Answer: The wires used to make connections from cell to cell
17). Distinguish between regular wires and special wires
Answer: Special wires are VDD and GND ,which has special arrangements. Regular wires
ordinary wires running form cell to cell.
18). How many metal layers...
Answer: 5 layers
19) What are vias:
Answer: Vias are the connections in vertical plane on a chip, used to make connections betw
metal layers in different horizontal planes. For example M1 and M2 can only be connected
vias.
20). Why are they needed for routing on a chip.
Answer: On a chip several routing metal layers are employed in different horizontal planes.
are used to make connections between different layers in different horizontal planes.
21). What information can you obtain from the report RC file:
Answer: An RC files gives more accurate values of parasitic capacitance and resistance af
layout has been completed. Since the layout has been done, accurate lengths of metals ar
defined. So the related parasitic resistance and capacitance can now be calculated. This in
stored in the RC file.
22).What is the difference between the stripes added in tutorial and in this exercise
Answer: Only difference is in the width of rings. which is 5 microns in this exercise and
10microns in the tutorials. Width and spacing of stripes is 5 and 2 microns repsectively in b
tutorial and in this exercise.
AVIRAL MITTAL ISLI 2005/2006 74

IPBA : VC Evaluation Assignment

iled
not a

ored
n exer-
nt. For
 not a

e in
Section 3.3: Results: HARD IP Generation.
The soft ip was converted into hard ip successfully. However it is to be noted that, CTgen fa
and clock tree optimization therefore was not done. Also DRC/LVS was not done as it was
part of this exercise, but it is a very important step in physical design.

The HARD IP assessment was also done using OpenMORE. The result was that the IP sc
103/504. That is the results of assessment was not found to be satisfactory. As this is just a
cise and not a real design, most of the steps in OpenMORE had not been taken into accou
example, first of all no hard ip specs were present, so no area or power goals. LVS/DRC is
part of this exercise, but OpneMORE has significant score related to them.
But the important part is that the exercise gave an insight about how RTL to GDSII flow is don
industry, and what are the main steps/tools/requirements/results in the flow
AVIRAL MITTAL ISLI 2005/2006 75

IPBA : VC Evaluation Assignment

ery
es),

re of
enta-
as no

so it
ious.
Section 4: Common or total Results and results discussion

The total result of the IP changed significantly after evaluation of HARD IP. Soft IP scored v
good result of around 80%(when evaluated against the main criteria i.e RTL coding guidelin
where as the result of HARD IP was not found up to a level of satisfaction. It produced a sco
29% only. The reason is simple, the IP given is given as a soft ip, and all the related docum
tion, specs, code, scripts refer to the soft ip only. Hard IP was generated locally and there w
information related to generation of hard ip. Also the soft ip was mainly targeted on FPGA
made more difficult to hardened in. So the poor result in evaluation of HARD IP is quite obv
AVIRAL MITTAL ISLI 2005/2006 76

IPBA : VC Evaluation Assignment

can
 prac-

e
imula-
hro-

 and

s.

antage.

re
Section 5 :Comment on the OpenMore envir onment.

OpenMORE environment was found very useful in evaluating the IP. Following OpenMORE
give a very high degree of re-use, understad ability of code, quality of code, good synthesis
tices for the code. It can quickly give an overall assessment on the quality of RTL code. Th
guidelines in OpenMORE also avoids common mistakes which a designer can do: such as s
tion and synthesis mismatches, un-intentional inference of latches, unstability due to async
nous feedbacks in the design.
It not only provides good practices for RTL, but also for Verification, System Design issues,
Physical Design.

Main Advantages of OpenMORE:
1). Gives high degree of re-use
2). Helps in avoiding common mistakes in RTL
3). Gives a way to code which is quickly understandable.
4). Gives marketability to the IP
6). Gives a very good industry standard common checklist, so that its difficult to forget thing
7). Gives a good way to implement verification plan

However there are some disadvantages too
1). OpneMORE is very exhaustive.
2). It can be very time consuming to follow each and every guideline
3). Following each and every guideline is not always possible.
4). Some guidelines may require unnecessary change in the design, giving not as much adv

Addition to OpenMORE.
In Section 5.3.7 ie. Coding For Translation (VHDL to Verilog), following guideline is recom-
mended to be added:
IF VHDL, no use of attributes like ‘HIGH, ‘LOW, ‘LENGTH.

These attributes are used commonly by VHDL designers to write functions in vhdl, which a
synthesizeable. And there is no replacement of these attributes in verilog.
AVIRAL MITTAL ISLI 2005/2006 77

IPBA : VC Evaluation Assignment
Section 6 APPENDIX:
B: Figures from Hard IP generation Process:
AVIRAL MITTAL ISLI 2005/2006 78

IPBA : VC Evaluation Assignment

#####

#####
C : Scripts used for some guidelines
blocking.pl
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for R5.5.6.1 of Openmore
Always use non blocking assignemnts in always blocks
Assumptions:
1). There are no ’assign’ statements inside an always statements
##
###

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

$begin = 0;
$always = 0;
$edge = 0;
$mystr = "";
$start_cat = 0;

open(out,">@ARGV[0].R5_5_6_1") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/) && ($ignore == 0)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $oneline = $lines[0];
 $oneline =~ s/(\s+)//g;
 if(($oneline =~ /edge/)&&($edge == 0)&&($oneline =~ /always/)) {
 $start_cat = 1;
 $edge = 1;
AVIRAL MITTAL ISLI 2005/2006 79

IPBA : VC Evaluation Assignment

;

 }
 elsif(($oneline =~ /(assign|always|endmodule)/) && ($edge == 1)) {
 $start_cat = 0;
 $edge = 0;
 }
 if($start_cat == 1) {
 $oneline =~ s/<=/##/g;
 $oneline =~ s/==/##/g;
 if($oneline =~ /for‹/) { #filter out statements with for loops
 next;
 }
 if($oneline =~ /=/) {
 print out "VIOL:R5.5.6.1: blocking assignment found in always @ (anyedge) block\n"
 print out "$nn: $line1\n\n";
 }
 }
 if(($oneline =~ /edge/)&&($edge == 0)&&($oneline =~ /always/)) {
 $start_cat = 1;
 $edge = 1;
 }
 } #while ($line1 = <infile0>)

#The logic: if any always begins with ’edge’ ie. posedge or negedge in it
#try to find a ’=’ till you get to enter another always or till you see
#a assign or till you see a endmodule.
#Since it was not possible to find out when an always block ends, the above
#stpes were taken thinking, that
#1). If another alwyas is fouund, the prev one must have ended
#2). If an assign is found, the prev always must have ended
#3). If an endmodule is found, the prev always must have ended

file: uniq.pl
AVIRAL MITTAL ISLI 2005/2006 80

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for R5.2.15.5 of Openmore
To find duplicate signals/veriables in two RTL files
##
###

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

$cat = 0;
$ii=0;
open(out,">file.R5_2_7_1") || die "Couldn’t open file.R5_2_7_1\n" ;
foreach $file (@ARGV) {
 print "$file\n";
 open(infile0,"<$file") || die "Couldn’t open infile0. $file\n ";
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $oneline = " $lines[0]";
 if(($oneline =~ /\s+module\s+|\s+reg\s+|\s+wire\s+/)) {
 $cat = 1;
 }
 if(($oneline =~ /(;|‹)/)&&($cat==1)) {
 $cat = 0;
 $myline = $myline.$oneline;
 #print "$myline\n";
 if($myline =~ /(module)\s+(\w+)/) {
 $fline = $2;
 }
 else {
 $fline = $myline;
AVIRAL MITTAL ISLI 2005/2006 81

IPBA : VC Evaluation Assignment
 }
 $myline = "";
 $fline =~ s/;//g;
 $fline =~ s/,/ /g;
 $fline =~ s/\[.*\]//g;
 $fline =~ s/(\s+module\s+|\s+wire\s+|\s+reg\s+)//g;
 @plist = split(/\s+/, $fline);
 #print "f=$fline\n";
 if($ii==0) {
 push(@parray_vec0, @plist);
 #@parray_vec0 = @parray;
 }
 elsif($ii==1) {
 push(@parray_vec1, @plist);
 #@parray_vec1 = @parray;
 }
 @plist = "";
 }
 if($cat ==1) {
 $myline = $myline.$oneline;
 }

 } #while ($line1 = <infile0>)
 close(infile0);
 #print "closing file\n";

 $ii++;
}

 foreach $signal0 (@parray_vec0) {
 foreach $signal1 (@parray_vec1) {
 if($signal0 eq $signal1) {
 print out "VIOL:R5.2.15.5 Duplicate signal/module/variable ’$signal0’ in $ARGV[0] and
$ARGV[1]\n";
 $jj++;
 }
 }
 }
 print out "Total Number of Duplicate signals/variables/modules = $jj\n";

file: ucase.pl
AVIRAL MITTAL ISLI 2005/2006 82

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.3 of Openmore
To find a lower case letter in constant definition
Only ’define statements are checked here
##
###
#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].G_5_2_1_3") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if($line1 =~ /module/) {
 $ignore = 1;
 }
 if(($line1 =~ /;/) && ($ignore == 1)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $lines[0] = " "."$lines[0]";
 if($lines[0] =~ /(‘define\s+(.*)\s+)/) {
 if($2 =~ /[a-z]/) {
 print out "VIOL:G.5.2.1.3 Lowercase letter found in Constant Name \n";
 print out "$nn: $lines[0]\n";

 }
 }
 } #while ($line1 = <infile0>)

file: sepline.pl
AVIRAL MITTAL ISLI 2005/2006 83

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for R5.2.6.1 of Openmore
To extract multiple statements in one line
Checked for 2 semicolons in one line
##
###

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].R5_2_6_1") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $oneline = $lines[0];
 $oneline =~ s/(\s+)//g;

 if($oneline =~ /;(.*);/) {
 print out "VIOL:R5.2.6.1: Two or more statements in one line found\n";
 print out "$nn: $line1\n\n";
 }
 } #while ($line1 = <infile0>)

file lcase.pl
AVIRAL MITTAL ISLI 2005/2006 84

IPBA : VC Evaluation Assignment

#####

#####

+)/) {
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.2 of Openmore
To find Uppercase letters in signals,variables,port Names
Items checked : input,output,inout,reg,wire,integer
##
###
#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].G_5_2_1_2") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if($line1 =~ /module/) {
 $ignore = 1;
 }
 if(($line1 =~ /;/) && ($ignore == 1)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $lines[0] = " "."$lines[0]";
 if($lines[0] =~ /(\s+input\s+|\s+output\s+|\s+inout\s+|\s+reg\s+|\s+wire\s+|\s+integer\s
 if($lines[0] =~ /[A-Z]/) {
 print out "VIOL:G.5.2.1.2 Uppercase letter found in signal/variable/port Name \n";
 print out "$nn: $lines[0]\n";

 }
 }
 } #while ($line1 = <infile0>)

file: hardcode.pl
AVIRAL MITTAL ISLI 2005/2006 85

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for G11.2.10.2 of Openmore
##
###

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].G5_3_2_1") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $oneline = $lines[0];
 $oneline =~ s/(\s+)//g;
 if($oneline =~ /(parameter|define|‘)/) { #to aviod stuff like if(‘DATA_SIZE = 100)
 #because this is realy not hardcoding
 next;
 }
 #if($oneline =~ /(parameter|define)/) {
 # next;
 #}
 if($oneline =~ /(\[(†+):(†+)])/) {
 print out "VIOL:G5.3.2.1: hardcoding found type1\n";
 print out "$nn: $line1\n\n";
 next;
 }
 if($oneline =~ /((†+)’(b|h|d))/) {
 if(!($2==1)) {
AVIRAL MITTAL ISLI 2005/2006 86

IPBA : VC Evaluation Assignment
 print out "VIOL:G5.3.2.1: hardcoding found type2\n";
 print out "$nn: $line1\n\n";
 next;
 }
 }
 if($oneline =~ /(’(b|h|d)(†+))/) {
 if(!(($3==0)||($3==1))) {
 print out "VIOL:G5.3.2.1: hardcoding found type3\n";
 print out "$nn: $line1\n\n";
 next;
 }
 }
 if($oneline =~ /(’(h)([A-Fa-f]))/) {
 print out "VIOL:G5.3.2.1: hardcoding found type4\n";
 print out "$nn: $line1\n\n";
 next;
 }
 if(($oneline =~ /(=(†+))/)&&(!($oneline =~ /(for|while)/))) {
 if(!(($2==0)||($2==1))) {
 print out "VIOL:G5.3.2.1: hardcoding found type5\n";
 print out "$nn: $line1\n\n";
 next;
 }
 }
 if($oneline =~ /((†+){)/) {
 print out "VIOL:G5.3.2.1: hardcoding found type6\n";
 print out "$nn: $line1\n\n";
 next;
 }
 } #while ($line1 = <infile0>)

file: downto.pl
AVIRAL MITTAL ISLI 2005/2006 87

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
To extract WARNINGS/VIOLATIONS in RTL for R5.2.1.11 of Openmore
To extract [0:x] type structurs in RTL
ONLY ports are checked. regs, wires etc are NOT checked
Bceause RMM spread sheet refers to ports ONLY
##

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].R5_2_1_11") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $oneline = $lines[0];
 $oneline =~ s/(\s+)//g;

 if($oneline =~ /input|output|inout/) {
 if($oneline =~ /(\[(0):(†+)])/) {
 print out "VIOL:R5.2.1.11: [0:x] found type1\n";
 print out "$nn: $line1\n\n";
 }
 if($oneline =~ /(\[(0):(\w+)])/) {
 print out "VIOL:R5.2.1.11: [0:x] found type2\n";
 print out "$nn: $line1\n\n";
 }
 }
 } #while ($line1 = <infile0>)
file: clkname.pl
AVIRAL MITTAL ISLI 2005/2006 88

IPBA : VC Evaluation Assignment

#####

#####
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for G5.2.1.6 of Openmore
To find that a clock singal name is ’clk’ or prefixed with ’clk’
all the signals which are which follow ’posedge’ are considered to be clock
signas
Assumption: there are no Async Resets in the design
##
###
#WARNING:WARNING: This file is not ready to be used

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

$clkname = "####";
open(out,">@ARGV[0].G_5_2_1_6") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if($line1 =~ /module/) {
 $ignore = 1;
 }
 if(($line1 =~ /;/) && ($ignore == 1)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(/⁄⁄/, $line1);
 $no_of_ele = $#lines;
 $origline = $lines[0];
 $lines[0] = " "."$lines[0]";
 $lines[0] =~ s/›/ /g ;
 if($lines[0] =~ /(posedge\s+(\w+)\s+)/) {
 $clk = $2;
 if(!($clk =~ /^(clk)/)) {
 if($clk eq $clkname) {
 }
 else {
 $clkname = $clk;
AVIRAL MITTAL ISLI 2005/2006 89

IPBA : VC Evaluation Assignment
 print out "VIOL:G.5.2.1.6 clk like signal not prefixed with ’clk’\n";
 print out "$nn: $origline\n";
 }

 }
 }
 } #while ($line1 = <infile0>)

filename: chars132.pl
AVIRAL MITTAL ISLI 2005/2006 90

IPBA : VC Evaluation Assignment

#####

#####

\n";
#!/usr/bin/perl
##
###
To extract WARNINGS/VIOLATIONS in RTL for R5.2.7.1 of Openmore
To check if the no of chars in each lines are less than or equal to 132
Split the line using ’no’ delimeter, and then have the no of elements in
resulting array.
##
###

if(@ARGV[0] eq "") {
 print "ERROR: insufficient fields\n";
 print "Usage:unix> stuff.pl <input_file> \n";
 exit;
}

open(out,">@ARGV[0].R5_2_7_1") || die "Couldn’t open mapfile for @ARGV[0]\n" ;
open(infile0,"<@ARGV[0]") || die "Couldn’t open infile0. @ARGV[0]\n ";
#system("awk ’/module/,/endmodule/’ @ARGV[0]>@ARGV[0].module")
 while ($line1 = <infile0>) {
 if(($line1 =~ /⁄*/)) {
 $ignore = 1;
 }
 if(($ignore == 1) && ($line1 =~ /*⁄/)) {
 $ignore = 0;
 }
 $nn++;
 if($ignore == 1) {
 next;
 }
 chomp($line1);
 @lines = split(//, $line1);
 $no_of_ele = $#lines;
 if($no_of_ele>132) {

print out "VIOL:R5.2.7.1: $no_of_ele chars in a line found.Which are grater than 132
 print out "$nn: $line1\n\n";
 }
 } #while ($line1 = <infile0>)
AVIRAL MITTAL ISLI 2005/2006 91

IPBA : VC Evaluation Assignment
D Log file generated by scripts evaluating IP
filename: ahb_external_memory_registers.v_rtl.G5_3_2_1
VIOL:G5.3.2.1: hardcoding found type1
137: input [1:0] htrans;

VIOL:G5.3.2.1: hardcoding found type1
138: input [2:0] hsize;

VIOL:G5.3.2.1: hardcoding found type1
140: input [31:0] haddr; // AHB address bus bits.

VIOL:G5.3.2.1: hardcoding found type1
141: input [31:0] hwdata;

VIOL:G5.3.2.1: hardcoding found type1
150: output [1:0] hresp; // AHB response. This module only provides.

VIOL:G5.3.2.1: hardcoding found type1
151: reg [1:0] hresp; // two types of response:

VIOL:G5.3.2.1: hardcoding found type1
157: output [31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found type1
158: reg [31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found type1
168: output [3:0] enable; // Active high level outputs. These are used

VIOL:G5.3.2.1: hardcoding found type1
171: output [3:0] read_only; // Active high level outputs. These are used

VIOL:G5.3.2.1: hardcoding found type1
177: output [3:0] read_wait_state0;

VIOL:G5.3.2.1: hardcoding found type1
178: output [3:0] read_wait_state1;

VIOL:G5.3.2.1: hardcoding found type1
179: output [3:0] read_wait_state2;

VIOL:G5.3.2.1: hardcoding found type1
180: output [3:0] read_wait_state3;

VIOL:G5.3.2.1: hardcoding found type1
184: output [3:0] write_wait_state0;
AVIRAL MITTAL ISLI 2005/2006 92

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type1
185: output [3:0] write_wait_state1;

VIOL:G5.3.2.1: hardcoding found type1
186: output [3:0] write_wait_state2;

VIOL:G5.3.2.1: hardcoding found type1
187: output [3:0] write_wait_state3;

VIOL:G5.3.2.1: hardcoding found type1
193: reg [2:0] slave_state;

VIOL:G5.3.2.1: hardcoding found type1
197: reg [3:0] reg_addr;

VIOL:G5.3.2.1: hardcoding found type1
209: reg [9:0] mem0_control_reg,

VIOL:G5.3.2.1: hardcoding found type1
215: reg [9:0] mem_control_reg [3:0];

VIOL:G5.3.2.1: hardcoding found type1
248: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type2
251: reg_addr <= 4’b0000;

VIOL:G5.3.2.1: hardcoding found type1
277: hresp[1:0] <= 2’b01;

VIOL:G5.3.2.1: hardcoding found type1
283: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
285: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
291: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
293: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
308: hresp[1:0] <= 2’b01;
AVIRAL MITTAL ISLI 2005/2006 93

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type1
338: hresp[1:0] <= 2’b01;

VIOL:G5.3.2.1: hardcoding found type1
344: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
346: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
352: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
354: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
359: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
413: hresp[1:0] <= 2’b01;

VIOL:G5.3.2.1: hardcoding found type1
420: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
422: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
428: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
431: reg_addr[3:0] <= haddr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
449: hresp[1:0] <= 2’b00;

VIOL:G5.3.2.1: hardcoding found type1
545: hrdata[31:0] <= 32’b0;

VIOL:G5.3.2.1: hardcoding found type1
555: 4’b1000 : hrdata[31:0] <= {22’b0, mem0_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found type1
556: 4’b0100 : hrdata[31:0] <= {22’b0, mem1_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found type1
AVIRAL MITTAL ISLI 2005/2006 94

IPBA : VC Evaluation Assignment
557: 4’b0010 : hrdata[31:0] <= {22’b0, mem2_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found type1
558: 4’b0001 : hrdata[31:0] <= {22’b0, mem3_control_reg[9:0]};

VIOL:G5.3.2.1: hardcoding found type1
561: default : hrdata[31:0] <= 32’b0;

VIOL:G5.3.2.1: hardcoding found type1
631: mem0_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b11};

VIOL:G5.3.2.1: hardcoding found type1
637: mem0_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found type1
652: mem1_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b00};

VIOL:G5.3.2.1: hardcoding found type1
658: mem1_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found type1
672: mem2_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b00};

VIOL:G5.3.2.1: hardcoding found type1
678: mem2_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found type1
692: mem3_control_reg[9:0] <= {4’b1111, 4’b1111, 2’b00};

VIOL:G5.3.2.1: hardcoding found type1
698: mem3_control_reg[9:0] <= hwdata[9:0];

VIOL:G5.3.2.1: hardcoding found type1
727: assign read_wait_state0 = mem0_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found type1
728: assign read_wait_state1 = mem1_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found type1
729: assign read_wait_state2 = mem2_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found type1
730: assign read_wait_state3 = mem3_control_reg[5:2];

VIOL:G5.3.2.1: hardcoding found type1
731: assign write_wait_state0 = mem0_control_reg[9:6];
AVIRAL MITTAL ISLI 2005/2006 95

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type1
732: assign write_wait_state1 = mem1_control_reg[9:6];

VIOL:G5.3.2.1: hardcoding found type1
733: assign write_wait_state2 = mem2_control_reg[9:6];

VIOL:G5.3.2.1: hardcoding found type1
734: assign write_wait_state3 = mem3_control_reg[9:6];

filename ahb_external_memory_control.v_rtl.G5_3_2_1
VIOL:G5.3.2.1: hardcoding found type1
189: input [3:0] hsel_mem; // Active high AHB memory bank select.

VIOL:G5.3.2.1: hardcoding found type1
196: input [1:0] htrans; // AHB transfer type indicator.

VIOL:G5.3.2.1: hardcoding found type1
202: input [2:0] hsize; // AHB transfer size indicator.

VIOL:G5.3.2.1: hardcoding found type1
218: input [31:0] haddr; // AHB address bus.

VIOL:G5.3.2.1: hardcoding found type1
220: input [31:0] hwdata; // APB data inout for write cycles.

VIOL:G5.3.2.1: hardcoding found type1
229: output [1:0] hresp; // AHB response. This module only provides.

VIOL:G5.3.2.1: hardcoding found type1
230: reg [1:0] hresp; // two types of response:

VIOL:G5.3.2.1: hardcoding found type1
236: output [31:0] hrdata; // APB data output for read cycles.

VIOL:G5.3.2.1: hardcoding found type1
237: reg [31:0] hrdata;

VIOL:G5.3.2.1: hardcoding found type1
248: input [3:0] enable; // Active high level inputs. These are used

VIOL:G5.3.2.1: hardcoding found type1
251: input [3:0] read_only; // Active high level inputs. These are used
AVIRAL MITTAL ISLI 2005/2006 96

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type1
274: input [3:0] read_wait_state0;

VIOL:G5.3.2.1: hardcoding found type1
275: input [3:0] read_wait_state1;

VIOL:G5.3.2.1: hardcoding found type1
276: input [3:0] read_wait_state2;

VIOL:G5.3.2.1: hardcoding found type1
277: input [3:0] read_wait_state3;

VIOL:G5.3.2.1: hardcoding found type1
278: input [3:0] write_wait_state0;

VIOL:G5.3.2.1: hardcoding found type1
279: input [3:0] write_wait_state1;

VIOL:G5.3.2.1: hardcoding found type1
280: input [3:0] write_wait_state2;

VIOL:G5.3.2.1: hardcoding found type1
281: input [3:0] write_wait_state3;

VIOL:G5.3.2.1: hardcoding found type1
286: input [31:0] mem_datain_i; // Memory device read databus.

VIOL:G5.3.2.1: hardcoding found type1
288: input [3:0] mem_invertbits_i; // Memory device read invertbits.

VIOL:G5.3.2.1: hardcoding found type1
295: output [3:0] mem_chip_enable_n_o; // Active low chip enable signals for

VIOL:G5.3.2.1: hardcoding found type1
296: reg [3:0] mem_chip_enable_n_o; // external memory devices.

VIOL:G5.3.2.1: hardcoding found type1
304: output [3:0] mem_byte_enable_n_o; // Active low byte strobe signals for

VIOL:G5.3.2.1: hardcoding found type1
305: reg [3:0] mem_byte_enable_n_o; // external memory devices. These are

VIOL:G5.3.2.1: hardcoding found type1
311: output [31:0] mem_address_o; // Output address bus for external

VIOL:G5.3.2.1: hardcoding found type1
AVIRAL MITTAL ISLI 2005/2006 97

IPBA : VC Evaluation Assignment
312: reg [31:0] mem_address_o; // memory devices.

VIOL:G5.3.2.1: hardcoding found type1
315: output [31:0] mem_dataout_o; // Output databus for external

VIOL:G5.3.2.1: hardcoding found type1
316: reg [31:0] mem_dataout_o; // memory devices.

VIOL:G5.3.2.1: hardcoding found type1
318: output [3:0] mem_invertbits_o; // Output databus for invert bits

VIOL:G5.3.2.1: hardcoding found type1
319: reg [3:0] mem_invertbits_o; // memory devices.

VIOL:G5.3.2.1: hardcoding found type1
321: output [3:0] mem_dataout_en_o; // Output enables

VIOL:G5.3.2.1: hardcoding found type1
322: reg [3:0] mem_dataout_en_o; // Output enables

VIOL:G5.3.2.1: hardcoding found type1
343: reg [3:0] wait_state_cntr;

VIOL:G5.3.2.1: hardcoding found type1
349: reg [1:0] hresp_pr;

VIOL:G5.3.2.1: hardcoding found type1
350: reg [3:0] byte_lane_enable;

VIOL:G5.3.2.1: hardcoding found type1
351: reg [3:0] byte_lane_enable_pr;

VIOL:G5.3.2.1: hardcoding found type1
355: reg [3:0] read_wait_state;

VIOL:G5.3.2.1: hardcoding found type1
356: reg [3:0] write_wait_state;

VIOL:G5.3.2.1: hardcoding found type1
357: reg [3:0] mem_chip_enable_n_pr;

VIOL:G5.3.2.1: hardcoding found type1
363: reg [3:0] hsel_mem_reg; // The captured values of hsel_mem

VIOL:G5.3.2.1: hardcoding found type1
AVIRAL MITTAL ISLI 2005/2006 98

IPBA : VC Evaluation Assignment

roto-
365: reg [32:0] haddr_gray_capture; // Gray format of haddr for checking byte enable in p
col checker

VIOL:G5.3.2.1: hardcoding found type1
368: reg [35:0] hwdata_businvert_capture; // BusInvert coded format of hwdata

VIOL:G5.3.2.1: hardcoding found type1
375: reg [5:0] current_state, next_state;

VIOL:G5.3.2.1: hardcoding found type1
630: always @ (posedge hclk) hresp[1:0] <= #tm_prop hresp_pr[1:0];

VIOL:G5.3.2.1: hardcoding found type2
704: mem_chip_enable_n_pr <= 4’b1111; // Default value

VIOL:G5.3.2.1: hardcoding found type1
721: always @ (posedge hclk) mem_chip_enable_n_o[3:0] <= #tm_prop
mem_chip_enable_n_pr[3:0];

VIOL:G5.3.2.1: hardcoding found type1
807: hsel_mem_reg[3:0] <= #tm_prop 4’b0000;

VIOL:G5.3.2.1: hardcoding found type2
877: byte_lane_enable_pr = 4’b0000;

VIOL:G5.3.2.1: hardcoding found type5
898: 1’b0: byte_lane_enable_pr = 4’b0011;

VIOL:G5.3.2.1: hardcoding found type2
900: default: byte_lane_enable_pr = 4’b1100;

VIOL:G5.3.2.1: hardcoding found type5
906: 1’b0: byte_lane_enable_pr = 4’b1100;

VIOL:G5.3.2.1: hardcoding found type2
908: default: byte_lane_enable_pr = 4’b0011;

VIOL:G5.3.2.1: hardcoding found type1
916: case (haddr_gray_capture[1:0])

VIOL:G5.3.2.1: hardcoding found type2
917: 2’b00: byte_lane_enable_pr = 4’b0001;

VIOL:G5.3.2.1: hardcoding found type2
918: 2’b01: byte_lane_enable_pr = 4’b0010;
AVIRAL MITTAL ISLI 2005/2006 99

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type2
919: 2’b11: byte_lane_enable_pr = 4’b0100;

VIOL:G5.3.2.1: hardcoding found type2
921: default: byte_lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type1
926: case (haddr_gray_capture[1:0])

VIOL:G5.3.2.1: hardcoding found type2
927: 2’b00: byte_lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type2
928: 2’b01: byte_lane_enable_pr = 4’b0100;

VIOL:G5.3.2.1: hardcoding found type2
929: 2’b11: byte_lane_enable_pr = 4’b0010;

VIOL:G5.3.2.1: hardcoding found type2
931: default: byte_lane_enable_pr = 4’b0001;

VIOL:G5.3.2.1: hardcoding found type2
937: byte_lane_enable_pr = 4’b1111;

VIOL:G5.3.2.1: hardcoding found type5
949: 1’b0: byte_lane_enable_pr = 4’b0011;

VIOL:G5.3.2.1: hardcoding found type2
951: default: byte_lane_enable_pr = 4’b1100;

VIOL:G5.3.2.1: hardcoding found type5
957: 1’b0: byte_lane_enable_pr = 4’b1100;

VIOL:G5.3.2.1: hardcoding found type2
959: default: byte_lane_enable_pr = 4’b0011;

VIOL:G5.3.2.1: hardcoding found type1
968: case (haddr[1:0])

VIOL:G5.3.2.1: hardcoding found type2
969: 2’b00: byte_lane_enable_pr = 4’b0001;

VIOL:G5.3.2.1: hardcoding found type2
970: 2’b01: byte_lane_enable_pr = 4’b0010;

VIOL:G5.3.2.1: hardcoding found type2
AVIRAL MITTAL ISLI 2005/2006 100

IPBA : VC Evaluation Assignment
971: 2’b11: byte_lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type2
973: default: byte_lane_enable_pr = 4’b0100;

VIOL:G5.3.2.1: hardcoding found type1
978: case (haddr[1:0])

VIOL:G5.3.2.1: hardcoding found type2
979: 2’b00: byte_lane_enable_pr = 4’b1000;

VIOL:G5.3.2.1: hardcoding found type2
980: 2’b01: byte_lane_enable_pr = 4’b0100;

VIOL:G5.3.2.1: hardcoding found type2
981: 2’b11: byte_lane_enable_pr = 4’b0001;

VIOL:G5.3.2.1: hardcoding found type2
983: default: byte_lane_enable_pr = 4’b0010;

VIOL:G5.3.2.1: hardcoding found type2
989: byte_lane_enable_pr = 4’b1111;

VIOL:G5.3.2.1: hardcoding found type2
1000: byte_lane_enable <= #tm_prop 4’b0;

VIOL:G5.3.2.1: hardcoding found type2
1017: mem_byte_enable_n_o <= #tm_prop 4’b1;

VIOL:G5.3.2.1: hardcoding found type1
1021: mem_byte_enable_n_o <= #tm_prop ~byte_lane_enable_pr[3:0];

VIOL:G5.3.2.1: hardcoding found type2
1038: mem_dataout_en_o <= #tm_prop 4’b0;

VIOL:G5.3.2.1: hardcoding found type1
1044: mem_dataout_en_o <= #tm_prop (byte_lane_enable[3:0] &
{4{mem_dataout_en_pr}});

VIOL:G5.3.2.1: hardcoding found type2
1226: mem_address_o <= #tm_prop 32’h0;

VIOL:G5.3.2.1: hardcoding found type1
1265: hrdata[31:0] <= #tm_prop 32’h00000000;

VIOL:G5.3.2.1: hardcoding found type1
AVIRAL MITTAL ISLI 2005/2006 101

IPBA : VC Evaluation Assignment
1279: hrdata[31:24] <= #tm_prop ~mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found type1
1283: hrdata[31:24] <= #tm_prop mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found type1
1291: hrdata[23:16] <= #tm_prop ~mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found type1
1295: hrdata[23:16] <= #tm_prop mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found type1
1303: hrdata[15:8] <= #tm_prop ~mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found type1
1307: hrdata[15:8] <= #tm_prop mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found type1
1315: hrdata[7:0] <= #tm_prop ~mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found type1
1319: hrdata[7:0] <= #tm_prop mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found type1
1329: hrdata[31:24] <= #tm_prop mem_datain_i[31:24];

VIOL:G5.3.2.1: hardcoding found type1
1334: hrdata[23:16] <= #tm_prop mem_datain_i[23:16];

VIOL:G5.3.2.1: hardcoding found type1
1339: hrdata[15:8] <= #tm_prop mem_datain_i[15:8];

VIOL:G5.3.2.1: hardcoding found type1
1344: hrdata[7:0] <= #tm_prop mem_datain_i[7:0];

VIOL:G5.3.2.1: hardcoding found type1
1370: hwdata_businvert_capture[35:27] <= #tm_prop
bus_invert_coder(hwdata[31:24],mem_dataout_o[31:24],mem_invertbits_o[3]);

VIOL:G5.3.2.1: hardcoding found type1
1371: hwdata_businvert_capture[26:18] <= #tm_prop
bus_invert_coder(hwdata[23:16],mem_dataout_o[23:16],mem_invertbits_o[2]);

VIOL:G5.3.2.1: hardcoding found type1
1372: hwdata_businvert_capture[17:9] <= #tm_prop
bus_invert_coder(hwdata[15:8],mem_dataout_o[15:8],mem_invertbits_o[1]);
AVIRAL MITTAL ISLI 2005/2006 102

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type1
1373: hwdata_businvert_capture[8:0] <= #tm_prop
bus_invert_coder(hwdata[7:0],mem_dataout_o[7:0],mem_invertbits_o[0]);

VIOL:G5.3.2.1: hardcoding found type1
1379: hwdata_businvert_capture[35:0] <= 36’b0;

VIOL:G5.3.2.1: hardcoding found type1
1407: mem_dataout_o[31:0] <= #tm_prop 32’h00000000;

VIOL:G5.3.2.1: hardcoding found type1
1408: mem_invertbits_o[3:0] <= #tm_prop 4’h0;

VIOL:G5.3.2.1: hardcoding found type1
1421: mem_dataout_o[31:24] <= #tm_prop hwdata_businvert_capture[34:27];

VIOL:G5.3.2.1: hardcoding found type1
1426: mem_dataout_o[23:16] <= #tm_prop hwdata_businvert_capture[25:18];

VIOL:G5.3.2.1: hardcoding found type1
1431: mem_dataout_o[15:8] <= #tm_prop hwdata_businvert_capture[16:9];

VIOL:G5.3.2.1: hardcoding found type1
1436: mem_dataout_o[7:0] <= #tm_prop hwdata_businvert_capture[7:0];

VIOL:G5.3.2.1: hardcoding found type1
1444: mem_dataout_o[31:24] <= #tm_prop hwdata[31:24];

VIOL:G5.3.2.1: hardcoding found type1
1448: mem_dataout_o[23:16] <= #tm_prop hwdata[23:16];

VIOL:G5.3.2.1: hardcoding found type1
1452: mem_dataout_o[15:8] <= #tm_prop hwdata[15:8];

VIOL:G5.3.2.1: hardcoding found type1
1456: mem_dataout_o[7:0] <= #tm_prop hwdata[7:0];

VIOL:G5.3.2.1: hardcoding found type2
1551: wait_state_cntr <= #tm_prop 4’b0000;

VIOL:G5.3.2.1: hardcoding found type2
1558: 3’b100: // Load read wait state value

VIOL:G5.3.2.1: hardcoding found type2
1562: 3’b010: // Load write wait state value
AVIRAL MITTAL ISLI 2005/2006 103

IPBA : VC Evaluation Assignment
VIOL:G5.3.2.1: hardcoding found type2
1566: 3’b001: // enable counter

VIOL:G5.3.2.1: hardcoding found type2
1573: assign b_wait_states_left = (wait_state_cntr == 4’b0000) ? 0 : 1;
AVIRAL MITTAL ISLI 2005/2006 104

	Table 1: G 5.2.1(example)
	Table 2: R 5.2.1.1
	Table 3: G 5.2.1.2
	Table 4: G 5.2.1.3
	Table 5: G 5.2.1.4
	Table 6: G 5.2.1.4a
	Table 7: G 5.2.1.5
	Table 8: G 5.2.1.6
	Table 9: G 5.2.1.7
	Table 10: G 5.2.1.8
	Table 11: G 5.2.1.9
	Table 12: R 5.2.1.10
	Table 13: R 5.2.1.11
	Table 14: G 5.2.1.12
	Table 15: G 5.2.1.13
	Table 16: R 5.2.4.1
	Table 17: R 5.2.5.1
	Table 18: G 5.2.1.2
	Table 19: G R5.2.6.1
	Table 20: G 5.2.7.1
	Table 21: G 5.2.8.1
	Table 22: G 5.2.8.2
	Table 23: G 5.2.9.1
	Table 24: R 5.2.10.1
	Table 25: G 5.2.10.2
	Table 26: G 5.2.10.3
	Table 27: G 5.2.10.4
	Table 28: RG 5.2.11.1
	Table 29: R 5.2.11.2
	Table 30: G 5.2.11.3
	Table 31: G 5.2.13.1
	Table 32: G 5.2.14.1
	Table 33: G 5.2.14.2
	Table 34: G 5.2.15.3
	Table 35: G 5.2.15.4
	Table 36: R 5.2.15.5
	Table 37: G 5.3.2.1
	Table 38: G 5.3.4.1
	Table 39: G 5.3.5.1
	Table 40: G 5.3.6.1
	Table 41: G 5.3.6.2
	Table 42: G 5.4.1.1
	Table 43: R 5.4.1.2
	Table 44: R 5.4.1.3
	Table 45: R 5.4.1.4
	Table 46: G 5.4.2.1
	Table 47: G 5.4.3.1
	Table 48: G 5.4.4.1
	Table 49: G 5.4.5.1
	Table 50: G 5.4.5.2
	Table 51: G 5.4.6.1
	Table 52: G 5.4.6.2
	Table 53: G 5.5.1.1
	Table 54: R 5.5.2.1
	Table 55: G 5.5.2.2
	Table 56: G 5.5.4.1
	Table 57: R 5.5.5.1
	Table 58: G 5.5.5.2
	Table 59: R 5.5.6.1
	Table 60: G 5.5.7.1
	Table 61: G 5.5.8.1
	Table 62: G 5.5.9.1
	Table 63: G 5.5.9.2a
	Table 64: G 5.5.9.3
	Table 65: G 5.5.9.4
	Table 66: G 5.6.1.1
	Table 67: G 5.6.2.1
	Table 68: G 5.6.3.1
	Table 69: G 5.6.4.1
	Table 70: G 5.6.4.2
	Table 71: G 5.6.5.1
	Table 72: G 5.6.7.1
	Table 73: G 5.6.7.2
	Table 74: G 5.6.7.3
	Table 75: G 5.6.7.4
	Table 76: G 5.6.8.1
	Table 77: G 5.7
	Table 78: G 5.8
	Table 79: R 6.2.1.1
	Table 80: R 6.2.2.1
	Table 81: G 6.2.4.1
	Table 82: G 6.2.5.1
	Table 83: G 6.2.7.1
	Table 84: R 7.1.3.1
	Table 85: G 7.1.3.1
	Table 86: G 7.3.1.2
	Table 87: G 7.3.2.2
	Table 88: G 7.3.2.3
	Table 89: G 7.3.2.5
	Table 90: G 7.3.2.6
	Table 91: G 11.6.2.1
	Table 92: R 11.6.2.2
	Table 93: G 11.6.2.3
	Table 94: G 11.6.2.4
	Table 95: R 11.6.2.5
	Table 96: R 11.6.3.1
	Table 97: G 11.6.3.2
	Table 98: G 11.6.3.3
	Table 99: G 11.7.2.1
	Table 100: G 11.7.6.7
	Table 101: R 9.1.1.1.1
	Table 102: R 9.1.1.1.3
	Table 103: R 9.1.1.1.4
	Table 104: R 9.1.1.1.5
	Table 105: R 9.1.1.1.6
	Table 106: R 9.1.1.1.7
	Table 107: R 9.1.1.2.1
	Table 108: R 9.1.1.2.2
	Table 109: R 9.1.1.3.1
	Table 110: R 9.1.1.3.2
	Table 111: G 9.1.1.4.1
	Table 112: G 9.1.1.3.2

