

Mp3HufDec

DATA SHEET AND USER GUIDE

V L S I I P
O W N E D B Y A V I R A L M I T T A L

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

2

Mp3HufDec
ISO 11172-3 LAYER III HUFFMAN DECODER.

ISO 11172-3 Layer III or commonly called as Mp3, employs Huffman encoding
technique to compress data, along with other compression schemes. Our product
Mp3HufDec is designed to ‘decode’ the Huffman coded data present in an Mp3 encoded
file. Its written using VHDL, and is fully synthesizeable.

Main Features:

 Synthesizeable single clock VHDL RTL core, with testbench.

 No memory Decoder : it dos NOT use any memory to decode the incoming bit
stream

 No latency Decoder: O/p values are produced at the very next clock edge, as
the corresponding input is received by the decoder.

 Low Gate Count : Less than 5K gates on TSMC 0.18u Tech

 Designed using ‘HufGen’ : our tool for generic Huffman Decoder Design

 Low licensing Cost: $4000 for Single Use Source.

What is the Huffman Decoder supposed to do?

As per the specifications, of ISO 11172-3 Layer III, the frequency spectrum of the audio
signal is packed in the bit stream as 2 granules per frame for each channel(the number of
channels can be either 1 or 2), and each granule is consist of 576 frequency samples, or
frequency lines. Out of these 576 frequency lines, ‘big_values’ pairs of lines are coded using
one of the 17 unique(32 in all) Huffman tables, ‘count1’ quadruples are coded using one of
the 2 huffman tables for the quadruples, and the rest(576 – 2 x big_values – 4 x count1) are
zeros, they are also called ‘rzeros’. The task of the Huffman decoder is to decode these
frequency lines, and produce corresponding values with their signs. The coding of the
frequency lines represented by ‘big_values’ has a special field associated with them called the
‘linbits. ‘linbits’ number of bits will may follow a ‘big_value’ if, the magnitude of the
corresponding ‘big_value’ is equal to 15. Value of ‘linbits’ are given in the specs with each
Huffman table. The bit stream syntax containing the Huffman codes is given in the ISO
specifications, under the function ‘Huffmancodebits()’. The task of the Huffman decoder is to
produce these 576-rzeros frequency lines for each granule with their correct sign and
magnitude. For each Huffman coded ‘big_value’, there are 2 decoded frequency lines called
‘is_x_out’ and ‘is_y_out’. For each Huffman coded ‘count1’, there are 4 decoded frequency
lines called ‘is_v_out_quad’, is_w_out_quad’, ‘is_x_out_quad’, ‘is_y_out_quad’. The
presence of a valid ‘is_x_out’ and ‘is_y_out’ is indicated by huf_output_valid. The presence
of ‘is_v_out_quad’ , ‘is_y_out_quad’ , ‘is_x_out_quad’ , ‘is_y_out_quad’ is indicated by
‘huf_output_valid_quad’ .

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 3

The Interface to the Huffman decoder :

Pin Name IN/OUT Description.

clk_in IN Clock input for the design

clr_n IN Async reset for the design when ‘0’, put the design
in reset, when ‘1’, let the design work.

mp3bit_stream IN Huffman coded bitstream as per Huffmancodedbits()

start IN Indicates valid Huffman data corresponding to
‘big_values’ part of the spectra, is valid at
‘mp3bit_stream’. This signal must be put to ‘1’ to
indicate that the current bit stream on the input
corresponds to the ‘big_values’ region of the
spectra.

start_quad IN Indicates valid Huffman data corresponding to
‘count1’ part of the spectra is valid at
‘mp3bit_stream’. This signal must be put to ‘1’, to
indicate that the current bit stream on the input
corresponds to the ‘count1’ region of the spectra

table_sel IN(4:0) A 5 bit input signal which indicates which of the
32 tables is to be used for decoding ‘big_values’.

count1_tablesel IN Signal bit input signal, to indicate which one of the
2 quadruple tables is to be used for decoding
‘count1’ values

found OUT It goes to ‘1’, and indicates that the Huffman
decoder has just found a code word in the input
bit stream(mp3bit_stream signal). This code word
belongs to the ‘big_values’ region of the spectra

found_quad OUT It goes to ‘1’, and indicates that the Huffman
decoder has just found a code word in the input
bit stream(mp3bit_stream signal). This code word
belongs to the ‘count1’ region of the spectra

is_x_out OUT(13:0) The decoded ‘x’ value corresponding to a
‘big_value’ Huffman code

is_y_out OUT(13:0) The decoded ‘y’ value corresponding to a
‘big_value’ Huffman code

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

4

sign_x OUT Sign bit for ‘is_x_out’

sign_y OUT Sign bit for ‘is_y_out’

is_v_out_quad OUT(3:0) The decoded ‘v’ value corresponding to a ‘count1’
Huffman code.

is_w_out_quad OUT(3:0) The decoded ‘w’ value corresponding to a ‘count1’
Huffman code.

is_x_out_quad OUT(3:0) The decoded ‘x’ value corresponding to a ‘count1’
Huffman code.

is_y_out_quad OUT(3:0) The decoded ‘y’ value corresponding to a ‘count1’
Huffman code.

sign_v_quad OUT Sign bit for is_v_out_quad

sign_w_quad OUT Sign bit for is_w_out_quad

sign_x_quad OUT Sign bit for is_x_out_quad

sign_y_quad OUT Sign bit for is_y_out_quad

huf_output_valid OUT Indicates the presence of two valid decoded values
‘is_x_out’ and ‘is_y_out’ belonging to the
‘big_value’ region of spectra. When ‘1’, then
‘is_x_out’ and ‘is_y_out’ contains valid decoded
values

huf_output_valid_quad OUT Indicates the presence of 4 valid decoded value
belongs ‘is_v_out_quad’, is_w_out_quad’,
‘is_x_out_quad’ and ‘is_y_out_quad’ belonging to
the ‘big_value’ region of spectra. When ‘1’, then
‘is_v_out_quad’, is_w_out_quad’ ‘is_x_out_quad’
and ‘is_y_out_quad’ contains valid decoded values

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 5

Figure 1: The Entity for Huffman Decoder with its I/Os.

clk_in

clr_n

mp3bit_stream

start

start_quad

table_sel[3:0]

count1_tablesel

found_quad

found

is_x_out[13:0]

sign_x

is_y_out[13:0]

is_v_out_quad[3:0]

sign_y

sign_v_quad

is_w_out_quad[3:0]

sign_w_quad

is_x_out_quad[3:0]

is_y_out_quad[3:0]

sign_x_quad

sign_y_quad

huf_output_valid

huf_output_valid_quad

Mp3HufDec

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

6

Section 2.

Working of the Huffman Decoder.

It is strongly recommended that the reader should go through the syntax of huffmancodedbits(),
in appendix A, before reading this section.

As soon as one of the inputs start or start_quad goes to ‘1’, and clr_n, is not enabled i.e its
set to ‘1’, and there is a running clock at the clk_in input, Huffman decoder starts working.
As soon as the input bitstream matches, a Huffman code from the table given by ‘table_sel’
(in case start is ‘1’ and start_quad is 0), ‘found’ goes ‘1’ in the same clock cycle. As per the
syntax of huffmancodedbits(), depending upon the corresponding decoded values, i.e x,y from
the table, the sign and the linbits corresponding to each decoded value(x and y) follows
hcod(x,y) in a manner described in huffmancodedbits(). The elements that may follow a hcod
are

linbits(x), if |x| = 15 and linbits !=0, for the table corresponding to table_sel

Sign(x), if |x| != 0

linbits(y), if |y| = 15 and linbits !=0, for the table corresponding to table_sel

sign(y), if|y| != 0

After all the expected elements corresponding to a hcod, are received by the Huffman
decoder, it produces final values ‘si_x_out’ and ‘si_y_out’ along with their sign ‘sign_x’ and
‘sign_y’, and the output signal ‘huf_output_valid’ is put to ‘1’. The user can use
‘huf_output_valid’ signal to clock in the data from the Huffman decoder.

Figure 2 below gives an example of Huffman decoding using Mp3HufDec, with 2 codes
being decoded from table number 24(linbits = 4). The first code word(hcod|x|,|y|) being
decoded is ‘0010000’ which corresponds to x=3,y=15. Since |x| is not equal to 15, no
linbits for ‘x’ are expected. Since ‘x’ is not equal to 0, therefore a sign bit for ‘x’ is expected
immediately after hcod(|x|,|y|). Since |y| is equal to 15, therefore linbits for ‘y’(linbitsy, 4
bits) are expected immediately after sign(x). Since |y| not equal to 0, sign bit for ‘y’ is
expected immediately after ‘linbitsy’(shown to be equal to 0011 in Figure 2). The final value
of x is therefore -3, and final value for y therefore +18, (which comes from |y| + linbitsy
).(Remember sign bit = 1 => -ive number, and sign bit = 0 => +ive number) Similarly it
can be seen that the second hcod(|x|,|y|), which is shown to be ‘1100’ is followed by just
sign(x), sign(y), giving x = +1, and y = +1. The decoding of the frequency spectrum
represented by ‘count1’ is also decoded in similar fashion as the ‘big_values’ region, but in
‘count1’ region, there are no linbits and instead of juxt ‘x’ or ‘y’, there are four decoded
values instead of 2 i.e ‘v’, ‘w’, ‘x’, ‘y’. The final values are called ‘is_v_out_quad’,
‘is_w_out_quad’ , ‘is_x_out_quad’, ‘is_y_out_quad’ with their sign bits as ‘sign_v_quad’,
‘sign_w_quad’, ‘sign_x_quad’ , ‘sign_y_quad’. These values are qualified by a presence of
‘huf_output_valid_quad’. Note that only one of the outputs, either ‘huf_output_valid’ or

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 7

‘huf_output_valid_quad’ can be active at any given time, provided, the inputs ‘start’ and
‘start_quad’ are not applied simultaneously.

The outputs ‘found’ and ‘found_quad’ are very helpful for user, as these can be used by user
to keep an account of a ‘counter’ which counts how many decoded values have been
received by user. For example if there exists a counter called ‘huf_codes_coutner’ then this
counter should be incremented by 2, whenever ‘found’ goes to ‘1’, and it should also be
incremented by 4, whenever ‘found_quad’ goes high for each clock cycle. If either ‘found’ or
‘found_quad’ is ‘1’ continuously for ‘n’ clock cycles, where n>1, then it definitely means that
the ‘huf_codes_counter’ should be incremented by

Case I: 2 for each number of clock cycles, ‘found’ was ‘1’, i.e after the end of ‘n’ clock cycles,
the ‘huf_codes_counter’ should have been incremented by n*2.

Case II: 4 for each number of clock cycles ‘found_quad’ was ‘1’, i.e after the end of ‘n’ clock
cycles, ‘huf_codes_counter’ should have been incremented by n*4.

For example if ‘table_sel’ is 16, ‘start’ is ‘1’, and ‘mp3bit_stream’ is ‘1’ for ‘n’ clock cycles. It
means that the input bit stream is consist of ‘n’ code words, corresponding to first entry in
the table where hcod(|x|,|y|) = ‘1’.

User should update the value of ‘table_sel’ if region boundary has been discovered, i.e
‘huf_code_counter’ = (number of codes in a region -2) and ‘found’ has been received. For

0 0 1 0 0 0 0
hcod(|x|,|y|)
x=3,y=15

linbitsy si
g
n
x

si
g
n
y

hcod(|x|,|y|)
x=1,y=1

si
g
n
x

si
g
n
y

1 1 0 0

table_sel = 24

-3

+18

-1

Figure 2. An example, where the huffman decoder is decoding a bit stream, having
codes from Table Number 24(linbits = 4).

clr_n

start

found

huf_output_valid

si_x_out

si_y_out

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

mp3bit_stream

-1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

8

example, in the ‘big_values’ region of the spectrum if number of codes in region0 are 48,
then if huf_code_counter reaches 46, and a ‘found’ has been asserted, user should switch the
value of ‘table_sel’ to point the correct ‘table_sel’ for region1. The new ‘table_sel’ will not
come into affect, until all the sign bits and linbits of 24th hcod has been received by the
Huffman decoder. This example is also illustrated in Figure 3 below. Note that even after
‘table_sel’ has been updated in clock period number 9, soon after ‘found’ has been detected,
the final values i.e ‘si_x_out’ and ‘si_y_out’ produced as output in clock period number 15,
belongs to table Number 24(identified by previous ‘table_sel’ value). Hence from this point
of time the ‘si_x_out’ and ‘si_y_out’ will belong to table Number 15(identified by new
‘table_sel’ value. The values ‘si_x_out’ = 0, and ‘si_y_out’ = -1 produced in clock period
number 21, thus belongs to table number 15.

Section 3.

Testing of the Huffman decoder.

Testing of the Huffman decoder is done using various test cases.

 Test Case I. This test case exercises each hcod present in each of the 17 unique
Huffman tables for ‘big_values’ region, and each hcod present in both the quad
tables, given in the specifications. This test case is called EXHAUST1.
Corresponding testbench is ‘huffman_tb_exhaust1.vhdl’

0 0 1 0 0 0 0
hcod(|x|,|y|)
x=3,y=15

linbitsy si
g
n
x

si
g
n
y

hcod(|x|,|y|)
x=0,y=1

si
g
n
y

1 1 0 0

table_sel = 24

-3

+18

0

Figure 3. An example, to show when the ‘table_sig’ must be updated, if the number
of codes reaches a region boundary.

table_sel = 15

new
hcode

huf_code_counter = 46 huf_code_counter = 48 50

clr_n

start

found

huf_output_valid

si_x_out

si_y_out

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

mp3bit_stream

-1

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 9

 Test Case II. This test case exercises hcod form some real .mp3 files.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

